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Abstract 

The genetic architecture of human reproductive behavior – age at first birth (AFB) and number of 

children ever born (NEB) – has a strong relationship with fitness, human development, infertility and 

risk of neuropsychiatric disorders. However, very few genetic loci have been identified and the 

underlying mechanisms of AFB and NEB are poorly understood. We report the largest genome-wide 

association study to date of both sexes including 251,151 individuals for AFB and 343,072 for NEB. 

We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-

based genome-wide association study, and four additional loci in a gene-based effort. These loci 

harbor genes that are likely to play a role – either directly or by affecting non-local gene expression – 

in human reproduction and infertility, thereby increasing our understanding of these complex traits. 

Introduction 

Human reproductive behavior – age at first birth (AFB) and number of children ever born (NEB) – 

has been associated with human development,1,2 infertility3,4 and neuropsychiatric disorders5. 

Reproductive tempo (AFB) and quantum (NEB) are cross-cutting topics in the medical, biological, 

evolutionary and social sciences and central in national and international policies.6 Advanced societies 

experienced a rapid postponement of AFB, with the mean AFB of women now being 28-29 years in 

many countries.7 This increase in AFB has been linked to lower fertility rates, unprecedented 

childlessness (~20%) and infertility, which affects 10 to 15 % of couples.8 An estimated 48.5 million 
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couples worldwide are infertile, with a large part of subfertility, particularly in men, remaining 

unexplained.9 Although infertility has been related to advanced AFB, ovulation defects, 

spermatogenic failure, and single- or polygenic defects, their causal effects remain unsubstantiated.10 

Until now, genetic and clinical research has focussed on proximal infertility phenotypes.3,4,10,11 AFB 

and NEB represent accurate measures of complex reproductive outcomes, are frequently recorded and 

consistently measured, and are key parameters for demographic population forecasting.12 There is 

evidence of a genetic component underlying reproduction, with heritability estimates of up to 50% for 

AFB and NEB (Supplementary Figure 1).6 A recent study attributed 15% of the variance of AFB and 

10% of NEB to common genetic variants.13 There are also sex-specific differences in human 

reproduction, related to the timing of fertility, fecundability and sex-genotype interactions 

(Supplementary Note). Researchers have given less attention to traits such as NEB due to an 

erroneous and frequently repeated misinterpretation of Fisher’s14 Fundamental Theorem of Natural 

Selection that the additive genetic variance in fitness should be close to zero. The misreading had a 

naively intuitive appeal: genes that reduce fitness should have been less frequently passed on. Fisher, 

however, actually argues that fitness is moderately heritable in human populations (for a discussion 

see the Supplementary Note). Since no established genes are currently available for clinical testing of 

infertility,10 isolating genetic loci and their causative effects has the potential to provide new insights 

into the etiology of reproductive diseases and novel diagnostic and clinical technologies for infertility 

treatment. 

RESULTS 

We report the largest meta-analysis of genome-wide association studies (GWAS) to date of 251,151 

individuals for AFB and 343,072 for NEB from a total of 62 cohorts of European ancestry. We 

identify 12 independent loci (10 of which are novel and 2 previously identified in a study on age at 

first sexual intercourse11) that are significantly associated with AFB and/or NEB in men, women 

and/or both sexes combined (Table 1). Follow-up analyses identified a number of genetic variants and 

genes that likely drive GWAS associations. We also quantified the genetic overlap with biologically 

adjacent reproductive, developmental, neuropsychiatric and behavioral phenotypes. A detailed 

description of all materials and methods is available in the Supplementary Note. 

Meta-analysis of GWAS 

Associations of AFB (mean ± SD 26.8±4.78 years) and/or NEB (mean ± SD 2.3±1.43 children) with 

NCBI build 37 HapMap Phase 2 imputed SNPs were examined in 62 cohorts using multiple linear 

regression under an additive model, in men and women separately (Supplementary Note). 

Associations were adjusted for principal components – to reduce confounding by population 

stratification15 – as well as for the birth year of the respondent and its square and cubic to control for 
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non-linear birth cohort effects (Supplementary Note and Supplementary Tables 1-,2 ). NEB was 

assessed only for those who had completed their reproductive period (age ≥ 45 women; age ≥ 55 

men), while AFB was only assessed for those who were parous. Quality control (QC) was conducted 

in two independent centers using QCGWAS16 and EasyQC17 (Supplementary Note). Results were 

subsequently meta-analyzed for the 2.4M SNPs that passed QC filters (Supplementary Note) and 

reported for men and women combined and separately. 

We applied a single genomic control at the cohort level and meta-analyzed results using a sample-size 

weighted fixed effect method in METAL (Supplementary Note). The PLINK clumping function 

isolated ‘lead SNPs’ – i.e. those with the lowest P-value for association that are independently 

associated – using an r2 threshold of 0.1 and distance threshold of 500 kb. For AFB, we identified ten 

genome-wide significantly associated loci (i.e., P<5x10-8 for combined and P<1.67x10-8 for sex-

specific results adjusted for multiple testing) of which nine were significantly associated in both sexes 

combined and one in women only (N=154,839) (Figure 1a, Table 1). Three loci were significantly 

associated with NEB: two in both sexes combined and one in men only (N=103,736) (Figure 1b, 

Table 1, Supplementary Note). One locus on Chr 1 reached significance for association with both 

AFB and NEB with an r2 of 0.57 between the two lead SNPs, suggesting a shared genetic basis for the 

two traits (Table 2). A statistical test of sex-specific effects confirms that differences are mainly due 

to variation in sample size and not variation in effect sizes (Supplementary Note).  

As for other complex traits18, the Q-Q plots of the meta-analyses exhibit strong inflation of low P-

values (Figure 2), suggesting that although cohorts controlled for the top principal components and 

cohort-level genomic control was applied (Supplementary Note), residual population stratification 

may remain. However, the LD Score intercept method19 as well as a series of individual and within-

family regression analyses using polygenic scores as predictors20,21 (Supplementary Note) indicated 

that the observed inflation is almost entirely attributable to a true polygenic signal, rather than 

population stratification. 

Gene-based GWAS 

To increase the power to find statistically significant associations and causal genes, we additionally 

performed a gene-based GWAS using VEGAS.22,23 The results confirmed top hits from the single-

SNP analyses. For AFB, seven loci from the SNP-based GWAS were also represented in the gene-

based analysis (Supplementary Table 3), and three additional loci emerged, represented by SLF2 (Chr 

10), ENO4 (Chr 10) and TRAF3-AMN (Chr 14). For NEB, one locus from the SNP-based GWAS was 

represented in the gene-based analysis – i.e. GATAD2B (Chr 1) – and one novel locus on Chr 17 was 

identified (Supplementary Table 4). 

Causal variants 
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To identify functional and potentially causal variants – coding or regulatory – within loci identified in 

the SNP-based GWAS (Table 1), we first performed an in silico sequencing annotation analysis using 

the post-GWAS pipeline reported by Vaez et al.24 This showed that rs10908557 on Chr 1 is in high 

LD with non-synonymous SNPs in CRTC2 (rs11264680; r2=0.98) and CREB3L4 (rs11264743; 

r2=0.94) (see Causal genes, Supplementary Table 5). Interestingly, rs11264743 is considered 

‘deleterious’ and ‘probably damaging’ by SIFT and PolyPhen, respectively (Ensembl release 83). In 

addition, rs2777888 on Chr 3 is in high LD with two non-synonymous SNPs in MST1R (rs2230590; 

r2=0.95 and rs1062633; r2=0.95) (Table 1, Supplementary Table 5). 

We subsequently performed a comprehensive analysis using results from the ENCODE25 and 

RoadMap Epigenomics26 projects as integrated in RegulomeDB,27 to identify variants that likely 

influence downstream gene expression via regulatory pathways. Amongst all SNPs that reached 

P<5x10-8 in the meta-analyses (N=322), 50 SNPs in five loci show the most evidence of having 

functional consequences (Table 1, Supplementary Table 6). Two sets of SNPs on Chr 1 (18 SNPs) 

and Chr 3 (25 SNPs) particularly stand out. The most promising SNP in the Chr 1 locus (rs6680140) 

is located in an H3K27ac mark, often found near active regulatory elements, and lies in a DNaseI 

hypersensitivity cluster where eight proteins are anticipated to bind. One of these proteins is cAMP 

responsive element binding (CREB) binding protein, encoded by CREBBP (see Causal genes). In the 

Chr 3 locus, rs2526397 is located in a transcription factor-binding site and is an eQTL for HYAL3 in 

monocytes, while rs2247510 and rs1800688 are located in H3K27ac sites and DNaseI 

hypersensitivity clusters where a large number of transcription factors are expected to bind (see 

Causal genes, Supplementary Table 6). An analysis using Haplotter showed that rs2247510 and 

rs7628058 in the Chr 3 locus are amongst the 5% of signals that show most evidence of positive 

selection in the population. The same applies to the lead SNP of the Chr 14 locus for NEB 

(rs2415984). 

Causal genes 

Information on the function and anticipated relevance of genes in the 12 loci identified in the SNP-

based GWAS that are most likely to be causal based on all evidence discussed below is provided in 

Table 2. 

Cis and trans eQTL and meQTL analyses 

Identifying alterations in gene methylation status and/or expression levels in relation to GWAS-

identified variants may help prioritize causal genes. We examined associations with gene expression 

and methylation status for the 12 independent lead SNPs in whole-blood BIOS expression (e)QTL 

(N=2,116) and methylation (me)QTL databases in cis and trans (N=3,841). 28,29 Seven SNPs were 

associated with gene expression in cis of 54 unique genes (Table 1, Supplementary Table 7). Five of 
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the seven SNPs were in high LD (r2>0.8) with the strongest eQTL of at least one of the genes within 

the corresponding loci, indicating that the SNP associated with AFB or NEB and the SNP most 

significantly associated with expression tag the same functional site, i.e., rs10908557 (associated with 

the expression of CRTC2 and SLC39A1), rs1160544 (AFF3), rs2777888 (RBM6, RNF123 and RBM5), 

rs2721195 (CYHR1, GPT, RECQL4 and PPP1R16A) and rs293566 (NOL4L). Three SNPs were 

associated with the expression of a total of eight genes in trans (Table 1, Supplementary Table 8). Of 

these SNPs, only rs2777888 was in high LD (r2>0.8) with the strongest eQTL for three of its five 

associated genes: LRFN1, LAMP2 and FGD3. 

The meQTL analysis showed that 11 of the 12 independent lead SNPs were associated with DNA 

methylation of a total of 131 unique genes in cis (Table 1, Supplementary Table 9). Seven of the 11 

SNPs were in high LD (r2>0.8) with the strongest meQTL of one of the corresponding methylation 

sites, i.e., rs10908557 (associated with methylation of CRTC2, SLC39A1, CREB3L4, DENND4B and 

RAB13), rs1160544 (AFF3), rs2777888 (CAMKV), rs6885307 (C5orf34), rs10056247 (JADE2), 

rs2721195 (CYHR1) and rs13161115 (EFNA5). Three of the SNPs were associated with the same 

genes for both methylation and gene expression in cis: rs10908557 (CRTC2), rs1160544 (AFF3) and 

rs2721195 (CYHR1) (Supplementary Tables 7,9). Three SNPs were associated with methylation of a 

total of ten genes in trans (Table 1, Supplementary Table 10). Of these SNPs, only rs2777888 was in 

high LD (r2>0.8) with the strongest meQTL of a corresponding methylation site (ASAP3). Of note: 

rs2777888 was also a trans eQTL. 

Gene prioritization  

We used four publicly available bioinformatics tools to systematically identify genes that are more 

likely than neighboring genes to cause the associations identified by our GWAS. Of all genes that 

reached P<0.05 in analyses using Endeavour,30 MetaRanker31 and ToppGene,32 eight genes were 

prioritized for both AFB and NEB: TPM3, GRM7, TKT, MAGI2, PTPRD, PTPRM, RORA and WT1. 

Data-driven Expression-Prioritized Integration for Complex Traits (DEPICT) – a fourth, 

comprehensive and unbiased recently described gene prioritization tool33 – identified three genes in 

GWAS significant loci as likely being causal for AFB (MON1A, RBM6 and U73166.2) 

(Supplementary Tables 11, 12). 

Gene-based results from RegulomeDB 

An analysis using RegulomeDB identified 50 SNPs in five loci that most likely have regulatory 

consequences (see Causal variants, Supplementary Table 6). Eighteen and 25 of these SNPs are 

within the Chr 1 and Chr 3 loci, respectively. Amongst the genes that – at a protein level – bind at the 

site of one or more of the 18 variants in the locus on Chr 1 are CREBBP, HNF4A, CDX2 and ERG. 

These genes may act upstream in the causal pathway and influence the expression of causal genes at 
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this locus. Of the 25 SNPs on Chr 3, ten were eQTLs for RBM6 in monocytes, and seven were eQTLs 

for HYAL3 in monocytes. Amongst the genes that – at a protein level – bind at rs2247510 and 

rs1800688 in the Chr 3 locus are ARID3A, REST and TFAP2C, as well as HNF4A and CDX2, which 

also bind at the Chr 1 locus. 

Five genes encode proteins that bind at the site of both SNPs on Chr 2 that reach P<5x10-8 in the 

meta-analysis of GWAS. One of these is REST (see Chr 3 locus), another one – ESR1 – is the most 

likely causal gene in the Chr 6 locus. 

Functional network and enrichment analyses 

Functional network analysis using five prioritized candidate gene sets as input (Supplementary Note) 

showed no significantly enriched biological function. No biological function was significantly 

enriched after correction for multiple testing using the Benjamini-Hochberg procedure. Similarly, no 

reconstituted gene sets and cell or tissue types were significantly enriched in the GWAS meta-analysis 

results based on results from the DEPICT analysis (Supplementary Tables 13-20). The lack of 

significantly enriched genes, tissue sets and biological functions reflects the need for a larger sample 

size but also the distal nature of the phenotypes, which are influenced by a mixture of biological, 

psychological and socio-environmental factors.  

Polygenic prediction 

To assess the predictive power of our results, we produced polygenic scores for AFB and NEB using 

sets of SNPs whose nominal P-values ranged from P<5x10-8 (i.e. using only genome-wide significant 

SNPs) to 1 (using all SNPs that passed quality control) using PRSice34 (Supplementary Note). We 

then performed a series of four different out-of-sample predictions in four independent cohorts: HRS, 

Lifelines, STR and TwinsUK. Across the four cohorts, the mean predictive power of a polygenic 

score constructed from all measured SNPs is 0.9% for AFB and 0.2% for NEB (Supplementary Figure 

2). Despite the low predictive power of the polygenic scores, the results showed that a 1 standard 

deviation (SD) increase of the NEB polygenic score is associated with a 9% (95% CI 5%–13%) 

decrease in the probability for women to remain childless, with no significant association in men 

(Supplementary Table 21). When we control for right-censored data using a survival model for AFB, 

we found that a 1SD increase in the AFB polygenic score is associated with an 8% (95% CI 7%–10%) 

reduction in the hazard ratio of reproduction in women and 3% (95% CI 1%–5%) in men 

(Supplementary Table 22). As an additional test, we examined whether the aforementioned polygenic 

scores for AFB and NEB can predict related fertility traits such as age at menopause and age at 

menarche (Supplementary Table 23). Our estimates indicate that a 1SD increase of the AFB polygenic 

score is associated with a 3% decrease in age at natural menopause (95% CI 1%–5% ) and a 20 day 

increase in age at menarche (95% CI 0.4–40 days).  
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Genetic association with related traits and diseases  

Several loci for which the associations with AFB and NEB reach genome-wide significance are 

associated with behavioral and reproductive phenotypes. The lead SNPs in the Chr 2 and Chr 3 loci 

have been associated with educational attainment35 and the locus on Chr 5 with age at menarche36 

while the locus on Chr 6 has recently been associated with age at first sexual intercourse37 

(Supplementary Table 24). Some of the 38 loci for age at first sexual intercourse that were recently 

identified in 125,667 UK Biobank participants were also associated with AFB (in/near RBM6–

SEMA3F and ESR1) and NEB (in/near CADM2 and ESR1). The lead SNPs for RBM6–SEMA3F 

(rs2188151) and ESR1 (rs67229052) are in LD with our lead SNPs for AFB on Chr 3 (r2= 0.44) and 

Chr 6 (r2=0.94), respectively. An in silico pleiotropy analysis showed that our lead SNP in the Chr 3 

locus (rs2777888) is in LD (r2=0.59) with rs6762477 – which has been associated with age at 

menarche2 – while other SNPs in the same locus have been associated with HDL cholesterol38 

(rs2013208; r2=0.81) and BMI39 (rs7613875; r2=0.81) (Supplementary Table 5). We next performed 

an exploratory analysis using the proxy-phenotype method40 to examine if the SNPs strongly 

associated with AFB in women are empirically plausible candidate SNPs for related traits like age at 

menarche and age at menopause (Supplementary Note). After controlling for multiple testing, we 

identified three AFB-associated SNPs near rs2777888 on Chr 3 (rs9589, rs6803222 and rs9858889) 

that are also associated with age at menarche (P<4.10x10-4). None of the AFB or NEB-associated 

SNPs are associated with age at menopause. 

We performed a bivariate LD score regression analysis41 to estimate the pairwise genetic 

correlation with 27 publicly available GWAS results for traits associated with human reproductive 

behavior (Supplementary Note). AFB shows significant and positive genetic correlations with the 

human (reproductive) developmental traits age at menarche, voice breaking, age at menopause, 

birth weight and age at first sexual intercourse, as well as with years of education. Conversely, 

having more AFB-increasing alleles is associated with a lower genetic risk of smoking (ever, 

number of cigarettes, later onset) and with lower insulin resistance-related phenotypes, i.e. BMI, 

waist-hip-ratio adjusted for BMI, fasting insulin, triglyceride levels and risk of diabetes (Figure 3 

and Supplementary Table 25). All genetic correlations remain significant after Bonferroni 

correction for multiple testing (P<2.6x10-3). Years of education (P=6.6x10-14) and age at first 

sexual intercourse (P=1.14x10-15) are the only traits that show significant and negative genetic 

correlations with NEB. We also observed significant genetic correlations of rg=0.86 (SE=0.052) for 

AFB and rg=0.97 (SE=0.095) for NEB between men and women, implying that most genetic 

effects on reproductive behavior resulting from common SNPs are shared across the sexes. 

Discussion 
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This GWAS is the largest genetic epidemiological discovery effort for human reproduction to date, 

with critical implications for population fitness and clear physiological mechanisms linking 

hypothesized genes and observed phenotypes. Related studies previously focussed on reproductive 

life span42,43, age at first sexual intercourse11 and more proximal infertility phenotypes,2–4 largely 

overlooking AFB and NEB. The rapid postponement of AFB and increased infertility and involuntary 

childlessness in many societies7 makes it important to uncover the genetic and biological architecture 

of reproduction. We identify ten novel and confirm two recently identified genetic loci that are 

robustly associated with AFB and NEB, as well as variants and genes within these loci that likely 

drive these associations. Four additional loci were identified in a gene-based GWAS. 

Two loci that show interesting results in follow-up analyses are located on Chrs 1 and 3. The lead 

SNPs of the Chr 1 locus for AFB and NEB are in LD with likely functional non-synonymous SNPs in 

genes encoding: 1) CREB (cAMP responsive element binding) regulated transcription co-activator 2 

(CRTC2), which at a protein level acts as a critical signal mediator in follicle-stimulating hormone 

(FSH) and transforming growth factor β1(TGFβ1)-stimulated steroidogenesis in ovarian granulosa 

cells44; and 2) CREB protein 3-like 4 (CREB3L4),45 which in humans is highly expressed in the 

prostate, ovaries, uterus, placenta and testis, and plays a role in spermatid differentiation46 and male 

germ cell development.47 The lead SNP and/or functional variants in LD with it are also associated 

with the methylation status of these two genes and expression of CRTC2 in whole blood and 

lymphocytes. Three promising functional variants in the Chr 1 locus reside in binding sites of the 

transcriptional co-activator CREB binding protein (CREBBP). In addition to a direct effect of the 

above-mentioned non-synonymous SNPs on protein function, the associations of AFB and NEB with 

variants in the locus on Chr 1 may thus be mediated by alterations in cAMP responsive element 

binding in men and women. The locus on Chr 1 also harbours DENND4B, a paralogue of DENND1A, 

implicated in PCOS.48 While DENND1A is expressed at the protein level in the ovary and testis, 

DENND4B is in the cervix, and its function and role are less well understood. 

The lead SNP of the locus on Chr 3 (rs2777888) is associated with methylation and expression of 

several genes – in cis and trans – that are known to play a role in cell cycle progression and/or sperm 

function. First, rs2777888 is associated with the expression of RNF123 (or KPC1) in cis, which plays 

a role in cellular transition from the quiescence to proliferative state. Secondly, rs2777888 – or 

functional variants in LD with it – may influence the cell cycle by altering the expression of RBM5 

and RBM6 (RNA binding motif proteins 5 and 6). The former plays a role in cell cycle arrest and 

apoptosis induction and regulates haploid male germ cell pre-mRNA splicing and fertility in mice. 

RMB5 mutant mice exhibit spermatid differentiation arrest, germ cell sloughing and apoptosis, 

leading to lack of sperm in ejaculation.49 Thirdly, rs2777888 affects expression of LAMP2 in trans, 

which is located on the X chromosome and encodes a lysosomal membrane protein involved in the 
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acrosome reaction, i.e. the enzymatic drill allowing sperm to penetrate and fertilize ovum.50 LAMP2 is 

expressed at the protein level in male and female reproductive organs with an effect size of rs2777888 

for LAMP2 mRNA expression that is almost twice as large in women than in men (Supplementary 

Figure 4). This suggests an important role for the lysosome in both sperm and ovum. Finally, 

functional variants in the Chr 3 locus are associated with the mRNA expression of HYAL3 in 

monocytes (hyaluronoglucosaminidase 3). The latter degrades hyaluronan, which also plays an 

important role in sperm function and the acrosome reaction.49,51 

Functional follow-up experiments could disentangle the potential interplay between many candidate 

genes in the loci on Chrs 1 and 3 on reproductive behavior and – given our in silico results – 

infertility. This can be extended to candidate genes in the remaining loci identified in the present 

study, some of which are relevant for fertility: mice lacking EFNA5 (Chr 5 NEB locus) are 

subfertile,52 ESR1 on Chr 6 encodes an estrogen receptor, 53,54 and CYHR1 on Chr 8 is involved in 

spermatogenesis55. Such experiments would help understand whether binding of estrogen receptor 1 – 

encoded by ESR1 in the locus on Chr 6 – at the site of functional variants in the locus on Chr 2 drives 

or mediates the association with AFB in the Chr 2 locus, as well as to identify and characterize causal 

genes. Recent developments in high-throughput, multiplex mutagenesis using Clustered Regularly 

Interspaced Short Palindromic Repeats (CRISPR) and associated systems (Cas9) allow such 

experiments to be performed using in vivo model systems.56 

AFB and NEB are not only driven by biological processes, but are also subject to individual choice 

and personal characteristics – such as personality traits – as well as by the historical, cultural, 

economic and social environment (e.g., effective contraception, childcare availability). Demographic 

research has shown a strong positive association between AFB and educational attainment.12 We show 

that the associations between fecundity, reproductive behavior and educational attainment are partly 

driven by genetic factors, and identified loci that are associated with AFB as well as with e.g., age at 

first sexual intercourse 37 and educational attainment.35 

Our findings are anticipated to lead to insights into how postponing reproduction may be more 

detrimental for some – based on their genetic make-up – than others, fuel experiments to determine 

‘how late can you wait’57 and stimulate reproductive awareness. Causal genes in the loci we identified 

may serve as novel drug targets, to prevent or delay age-related declines in fertility and sperm quality, 

or increase Assisted Reproductive Technology efficiency. Our study is the first to examine the 

genetics of reproductive behavior in both men and women, and the first that is adequately powered to 

identify loci both in women and men. We also provide support for Fisher’s theorem that fitness is 

moderately heritable in human populations. While effect sizes of the identified common variants are 

small, there are examples of GWAS-identified loci of a small effect that end up leading to important 

biological insights.58,59 Many of our findings suggest a role for sperm quality, which is one lead for 
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researchers to pursue. Since current sperm tests remain rudimentary, our findings could serve as a 

basis for ‘good quality’ sperm markers. We identified variants that are likely causal – both coding and 

regulatory – as well as a set of genes that likely underlie the associations we identified. Follow-up 

experiments in animal models are required to confirm and characterize the causal genes in these loci. 

URLs 

Analysis plan pre-deposited in the Open Science Framework website: https://osf.io/53tea/ 
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Figure 1. Manhattan plots of SNPs for AFB (age at first birth) and NEB (number of children 

ever born) in single genomic control meta-analysis. SNPs are plotted on the x-axis according to 

their position on each chromosome against association with AFB (panel a) and NEB (panel b). The 

solid blue line indicates the threshold for genome-wide significance (P<5x10-08) and the red line, the 

threshold for suggestive hits (P<5x10-06). Blue points indicate SNPs in a ±100 KB region around 

genome-wide significant hits. Gene labels are annotated as the nearby genes to the significant SNPs.  

 

 

Figure 2. Quantile-quantile plots of SNPs for AFB (panel a) and NEB (panel b) in single 

genomic control, meta-analysis. The grey shaded areas in the Q-Q plots represent the 95% 

confidence bands around the P-values under the null hypothesis. 

 

Figure 3.  Genetic overlap between AFB and NEB and other related traits. Results from Linkage-

Disequilibrium (LD) Score regressions: estimates of genetic correlation with developmental, 

reproductive, behavioral, neuropsychiatric and anthropometric phenotypes for which GWAS 

summary statistics were available in the public domain. The length of the bars indicates the estimates 

of genetic correlation. Grey error bars indicate 95% confidence intervals. The mark “*” indicates that 

the estimate of genetic correlation is statistically significant after controlling for multiple testing 

(P<0.05/27=1.85x10-3). 
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Table 1. GWAS meta-analysis results for independent loci that are genome-wide significantly (P<5.0x10−8) associated with AFB or NEB in either the 
combined or sex-specific meta-analysis.  
 

Note: The rows in bold are the independent signals reaching P<5×10−8 in the meta-analysis. Annotation shows for each of the 12 independent lead SNPs (i.e., 

excluding rs10908474 on Chr 1) whether it is (i) in strong LD (r2>0.8) with a non-synonymous variant (N) or one or more variants prioritized by 

RegulomeDB (R) with evidence of having functional consequences (defined as a score <4); (ii) associated with an eQTL in cis and/or trans (ctQ); (iii) 

associated with an meQTL in cis and/or trans (ctM). “EAF” refers to effect allele frequency of the pooled meta-analysis. “Beta” refers to the effect size in the 

AFB and NEB analyses. All P values are from the fixed effects, sample-size–weighted meta-analysis. 

  

SNP Chr 
Position 

(bp) Nearest Genes  Annotation 

Effect 
Allele / 
Other 
Allele EAF Beta P value 

 
 

N 
(pooled) 

Beta 
(men) 

P value 
(men) 

Beta 
(women) 

P value 
(women) 

  Age at first birth (AFB) 

rs10908557 1 153927052 CRTC2 
N, R, ctQ, 

ctM C/G 0.695  0.091 5.59E-10 249,025  0.185 2.98E-07  0.076 5.38E-06 
rs1160544 2 100832218 LINC01104 R, cQ, cM A/C 0.395 -0.082 2.90E-09 250,330 -0.042 2.12E-01 -0.092 5.00E-09 

rs2777888 3 49898000 CAMKV 
N, R, ctQ, 

ctM   A/G 0.507  0.106 4.58E-15 250,941  0.155 2.40E-06  0.095 6.07E-10 
rs6885307 5 45094503 MRPS30, HCN1 R, ctQ, cM A/C 0.799 -0.107 2.32E-10 248,999 -0.131 2.07E-03 -0.104 3.90E-08 
rs10056247 5 133898136 JADE2 cQ, cM T/C 0.289  0.082 4.37E-08 249,429  0.050 1.68E-01  0.089 1.28E-07 
rs2347867 6 152229850 ESR1 cM A/G 0.649  0.091 1.38E-10 248,039  0.098 4.69E-03  0.097 1.80E-09 
rs10953766 7 114313218 FOXP2 cM A/G 0.429  0.087 1.82E-10 248,039  0.106 1.31E-03  0.089 8.41E-09 
rs2721195 8 145677011 CYHR1 R, cQ, ctM   T/C 0.469 -0.073 6.25E-07 250,493 -0.014 6.85E-01 -0.099 6.13E-09 
rs293566 20 31097877 NOL4L  cQ, cM T/C 0.650  0.081 1.41E-08 245,995  0.110 1.47E-03  0.079 1.31E-06 
rs242997 22 34503059 LARGE1, ISX  A/G 0.613 -0.084 3.38E-09 238,002 -0.139 8.51E-05 -0.076 1.82E-06 
  Number of children ever born (NEB) 
rs10908474 1 153753725 SLC27A3, GATAD2B  A/C 0.384  0.020 2.08E-08 342,340  0.021 8.10E-04  0.020 7.89E-06 
rs13161115 5 107050002 EFNA5, FBXL17 cM C/G 0.234 -0.041 1.34E-02 341,737 -0.041 1.37E-08  0.005 3.29E-01 
rs2415984 14 46873776 LINC00871 cM A/G 0.470 -0.020 2.34E-08 315,167 -0.029 2.41E-06 -0.016 3.71E-04 
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Table 2. Function and potential relevance for genes in GWAS-identified loci that are most likely causal based on all available evidence. 
Lead SNP Gene Chr Evidence Gene function and potential role in reproduction and (in)fertility Reference 
rs10908557  CRTC2 1 G, V, ctQ, ctM, Q 

lymph. (R) 
Functions as a Ca2+ and cAMP-sensitive coincidence sensor; Promotes CREB target genes 
expression; Is a signal mediator in FSH and TGFβ1-steroidogenesis in ovarian granulosa cells. 
 

60 
 

rs10908557  CREB3L4 1 N, V, cQ, cM Plays a role in protein maturation; Involved in spermatid differentiation and male germ cell 
development; Expressed in prostate, oocytes, fallopian tubes, mammary glands. 46,47 

 
rs10908557  GATAD2B 1 V, Q monoc. (R) Transcriptional repressor and a component of nucleosome remodelling complex Mi2/NuRD. 

Increased expression in endometriosis; a common gynaecological disorder that causes pelvic 
pain and infertility. 

61, 62 

 
 
 

rs10908557  
 

SLC39A1 1 V, cQ, cM Zinc uptake transporter; Major zinc regulator in prostate cells; Involved in the regulation of zinc 
homeostasis by cumulus cells in the oocyte. 63, 64 

rs10908557  
 

DENND4B 1 cM A paralogue of DENN1A, which has been implicated in polycystic ovary syndrome; Expressed at 
the protein level in the cervix. 65, 66 

rs1160544  AFF3 2 cQ, cM A lymphoid nuclear transcriptional activator gene and implicated in tumor genesis; Same family 
as AFF3, AFF4 (FMR2 family member 4); Transcriptional regulator in testicular somatic cells; 
Essential for male germ cell differentiation and survival in mice. 

67, 68 

rs1160544  LINC01104 2 G, V Unknown.  

rs2777888  HYAL3 3 cM, Q monoc. (R) Hyaluronidases including HYAL3 are involved in degradation of hyaluronan, a major 
glycosaminoglycan of the extracellular matrix; Acquired during sperm maturation in the 
epididymis and involved in sperm function and the acrosome reaction; Required for in vitro 
cumulus penetration in mice, although, its absence is not associated with infertility (perhaps 
compensated for by other Hyaluronidases). 

69 

rs2777888  RBM6 3 V, cQ, cM, DEPICT, Q 
monoc. (R) 

Involved in RNA splicing. 
 70 

rs2777888  RNF123 3 V, cQ, cM, Q liver (R) Plays a role in cellular transitioning from the quiescence to proliferative state by its E3- ubiquitin 
ligase activity towards cyclin-dependent kinase inhibitor 1B, which controls the cell cycle 70–72 
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progression at G1 phase.  
rs2777888  RBM5 3 V, cQ Involved in cell cycle regulation; Is a regulator of precursor messenger RNA splicing; Involved 

in spermatogenesis and fertility in mice. 73 
rs2777888  MON1A 3 V, cM, DEPICT Involved in the movement and trafficking of proteins (e.g. ferroportin) through the secretory 

apparatus. 74 
rs2777888  U73166.2 3 DEPICT Unknown.  
rs2777888  MST1R 3 N, V, cM, MetaRanker, 

ToppGene and Endeavour 
A cell-surface receptor for MSP with tyrosine kinase activity, expressed on the ciliated epithelia 
of the mucociliary transport apparatus of the lung: Involved in host defence, expressed in sperm. 
May act as a regulatory system of ciliary motility – together with MSP – which sweeps eggs 
along the oviduct; Expressed in mucous membrane, mammary glands. 
 

75 

rs10056247  JADE2 5 G, V, cM, Involved in histone acetylation. 
 

 

rs13161115 EFNA5 5 cM Involved in development and differentiation of the nervous system and folliculogenesis 
regulation; Required for normal fertility in female mice; Expressed in embryonic stem cells, 
embryoid bodies. 

76 

rs6885307 HCN1 5 G, cM Hyperpolarization-activated cation channel that contributes to the native pacemaker current in 
e.g. neurons; HCN1 channels are present in Kisspeptin (Kiss1) neurons in the rostral 
periventricular area of the third ventricle (RP3V), which provide an excitatory drive to 
gonadotropin-releasing hormone (GnRH) expressing neurons that control fertility. 

77 

rs2347867 ESR1 6 G, cM, binds at 
rs4851269 on Chr2 (R) 

Transcription factor involved in estrogen-responsive gene expression. Essential for sexual 
development and reproductive function in women; Genetic variants in ESR1 may influence 
susceptibility to endometriosis or female fertility in endometriosis patients; Involved in male 
fertility by transferring estrogen effect; Expressed in myometrium, endometrium, oocytes, uterus, 
fallopian tubes. 

53,78–81 

rs10953766 FOXP2 7 G, cM, binds at rs6997 
on Chr 3 (R) 

Transcription factor expressed in fetal and adult brain that is involved in speech and language 
development; Involved in regulation of neuronal development in the embryonic forebrain. 
Expressed in mucous membrane, myometrium. 

82 

rs2721195  CYHR1 8 cQ, cM A histidine-cysteine rich protein involved in spermatogenesis. 
55 

rs2721195  GPT 8 V, cQ, cM, Q monoc. (R) Involved in intermediary metabolism of glucose and amino acids; May play a role in 
spermatogenesis via testicular glucose metabolism, which is pivotal for the normal occurrence of 
spermatogenesis; Levels in the normal range are positively associated with metabolic and 
endocrine abnormalities in women of reproductive age and negatively with FSH levels, 
independently of obesity. 

83,84 

rs2721195  RECQL4 8 V, cQ, cM Processing of aberrant DNA structures that arise during DNA replication and repair.; 
Predominantly expressed in testis. 85 
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rs2721195  PPP1R16A 8 V, cQ, cM, Q monoc. (R) Regulator of protein phosphatase PP1β;Present in the sperm tail where it interacts with proteins 
that are important in sperm structure and motility;Expressed in mammary glands, fallopian tubes. 86 

rs293566  NOL4L 20 cQ, cM A component of cytoplasm and nucleoplasm;Expressed in Umbilical Veins.  
Evidence categories include: nearest gene (G), non-synonymous variant (N), gene-based GWAS performed in VEGAS (V), eQTL in cis and/or trans (ctQ), meQTL in cis and/or trans 
(ctM), eQTL (Q) in lymphoblasts (lymph), monocytes (monoc) or liver based on RegulomeDB (R), gene prioritization using either DEPICT or MetaRanker, ToppGene and Endeavour, 
protein binding at SNP based on RegulomeDB (R). 
Chr= Human chromosome on which the gene is located. 
FSH= Follicle-stimulating hormone; CREB=cAMP response element-binding protein; TGFβ1= Transforming growth factor β1; MSP = Macrophage stimulating protein 
SNIPPER was used for the literature search, using the search terms “fertility”, “sperm”, “ovum” and “reproduction”.  
Gene Network was used for finding the tissue/organ with high expression of a given gene (AUC >0.8). 
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ONLINE METHODS 

GWAS of reproductive behavior study design in brief 

Genome-wide association analyses of age at first birth (AFB) and number of children ever 
born (NEB) were performed at the cohort level according to a pre-specified analysis plan (see 
Supplementary Note). Cohorts uploaded results imputed using the HapMap 2 CEU (r22.b36) 
or 1000G reference sample. Cohorts were asked to only include participants of European 
ancestry, with no missing values on all relevant covariates (sex, birth year, and cohort 
specific covariates), who were successfully genotyped genome-wide, and passed cohort-
specific quality controls. We followed the QC protocol of the GIANT consortium’s recent 
study of human height87 and employed QCGWAS88 and EasyQC89 software, which allowed 
us to harmonize the files and identify possible sources of errors in association results.  

Cohort association results (after applying the QC filters) were combined using sample-size 
weighted meta-analysis with genomic control (GC) correction within each study, 
implemented in METAL.90 SNPs were considered genome-wide significant at P-values 
smaller than 5×10-08 (α of 5%, Bonferroni-corrected for a million tests). The meta-analyses 
were carried out by two independent analysts. Detailed results of each genome-wide 
significant locus are shown in in Supplementary Figures 4-29. 

The total sample size of the meta-analysis is N=251,151 for AFB pooled and N=343,072 for 
NEB pooled. The PLINK clumping function91 was used to identify the most significant SNPs 
in associated regions (termed “lead SNPs”). Detailed cohort descriptions, information about 
cohort-level genotyping and imputation procedures, cohort-level measures, and quality 
control filters are shown in Supplementary Tables 26, 27 and discussed in the Supplementary 
Note. 

Dominant genetic variation in fertility 
We applied a method recently developed by Zhu and colleagues92 to estimate dominant 
genetic effects based on the genetic relatedness of unrelated individuals. Our results based on 
the combined samples of TwinsUK and Lifelines show no evidence for dominant genetic 
effects for either NEB (1.0x10-07, SE=0.07, P=0.45) nor AFB (0.02, SE=0.08, P=0.43. 
Results are shown in Supplementary Table 28 and discussed in the Supplementary Note.  

Bivariate and conditional analysis 
As joint analysis of correlated traits may boost power for mapping functional loci, we applied 
a recently developed multi-trait analysis method93 to test the association between each variant 
and the two correlated traits AFB and NEB simultaneously using multivariate analysis of 
variance (MANOVA) (see Supplementary Note and Supplementary Table 29). The analysis 
was performed based on the genome-wide meta-analysis summary statistics of each single 
trait. Although it did not reveal additional genome-wide significant loci (!=0.995), it 
accounted for the correlation between the two phenotypes, thus improving the strength of two 
signals on chromosomes 1 and 5, indicating possible pleiotropic architecture between AFB 
and NEB (Supplementary Figure 30). The analysis also provided a conditional association 
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test of the genetic effect of each variant on AFB including NEB as a covariate, and on NEB 
including AFB as a covariate (Supplementary Figure 31) 

 

Population stratification 
We used two methods to assess whether our GWAS results exhibited signs of population 
stratification (see Supplementary Note). First, we used the LD Score intercept method 
described in Bulik-Sullivan et al.94 to test whether inflation in chi-square statistics was due to 
confounding biases such as cryptic relatedness and population stratification. In all six cases, 
the intercept estimates were not significantly different from 1, suggesting no appreciable 
inflation of the test statistics attributable to population stratification. Second, we conducted a 
series of individual and within-family (WF) regressions using polygenic scores (PGS) as 
predictors95–97 on a dataset of DZ twins (STR and TwinsUK). The regression analyses 
showed that WF regression coefficients for both AFB and NEB were statistically different 
from zero when the P-value threshold was sufficiently high (Supplementary Tables 30, 31 
and Supplementary Figures 32, 33). 

Sex-specific effects 
In addition to the pooled GWAS results presented in the main text, we also ran sex-specific 
GWAS meta-analyses for AFB and NEB (see Supplementary Note). The sample size for sex-
specific analysis was: AFB women, N=189,656; AFB men, N=48,408; NEB women 
N=225,230; NEB men N=103,909. Our results indicated 6 genome-wide significant (P<5x10-

08) independent SNPs for AFB women and 1 genome-wide significant independent SNP for 
NEB men (Supplementary Table 32 and Supplementary Figures 34, 35). We also used LD 
score bivariate regression and GREML bivariate analysis to estimate the genetic correlation 
among men and women based on the sex-specific summary statistics of AFB and NEB meta-
analysis results. Our estimates based on LD bivariate regression indicated a genetic 
correlation of rg=0.86 (SE=0.052) among the sexes for AFB and rg=0.97 (SE=0.095) for 
NEB. Results are shown in Supplementary Tables 33, 34 and discussed in the Supplementary 
Note. 

Polygenic score prediction 

We performed out-of-sample prediction and calculated polygenic scores for AFB and NEB, 
based on GWA meta-analysis results and used regression models to predict the same 
phenotypes in four independent cohorts: HRS, Lifelines, STR and TwinsUK (see 
Supplementary Note and Supplementary Figure 2). We ran ordinary least-squares (OLS) 
regression models and reported the R2 as a measure of goodness-of-fit of the model. In 
addition, we tested how well our polygenic scores for NEB could predict childlessness at the 
end of the reproductive period (using age 45 for women and 55 for men), Supplementary 
Table 21. Since age at first birth is observed only in parous women, we adopted an additional 
statistical model to account for censoring (Cox Proportional hazard model, Supplementary 
Table 22) and selection (Heckman selection model, Supplementary Table 35). We 
additionally tested the predictive value of our polygenic scores for AFB for age at menarche 
(using TwinsUK) and age at menopause (using Lifelines), Supplementary Table 23. Finally, 
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we examined whether menopause variants are associated with AFB. We calculated a PGS of 
age at menopause based on the recent GWAS results from Day et al. (2015)98 and applied 
them to LifeLines and TwinsUK (Supplementary Table 36). 

Genetic correlations 

We used information from 27 publicly-available GWAS results to estimate the amount of 
genetic correlations between AFB and NEB and related traits (Supplementary Table 25 and 
Figure 3 in the main text) using LD score bivariate regression (see Supplementary Note). 
Details on these phenotypes are provided in the Supplementary Note. A conservative 
Bonferroni-corrected P-value threshold of P<1.85×10−03 (=0.05/27) was used to define 
significant associations. We also tested the correlation between NEB and AFB using a 
bivariate GREML analysis on the Women’s General Health Study (WGHS, N=40,621). 

Lookups and proxy phenotype 

Following the results on genetic overlap with other phenotypes we tested – in a quasi-
phenotype replication setting – whether the SNPs strongly associated with AFB in women 
were empirically plausible candidate SNPs for age at menarche and age at menopause (see 
Supplementary Note). We used a two-stage approach applied in other contexts.99,100 In the 
first stage, we conducted a meta-analysis of AFB excluding the cohorts that were part of the 
meta-analysis of the phenotype we intended to replicate. We merged the SNPs from this 
meta-analysis with the publically available association results of the most recent GWAS on 
age at menarche2 and age at menopause101 from the Reprogen consortium website.1 SNPs that 
were not present in both files were dropped from the analysis. We aligned the alleles and the 
direction of effects using the EasyStrata software.102 We then selected the independent SNPs 
with a P-value<1x10-05, using the clump procedure in PLINK91, (1000Kb window and LD 
threshold of R2>0.1) to identify the most significant SNPs in associated regions included in 
both files. We defined “prioritized SNP associations” as those that passed the Bonferroni 
correction for the number of SNPs tested (0.05/122=4.10x10-04, both in age at menarche and 
age at menopause). Our results identified three SNPs after Bonferroni-correction that can be 
used as good candidates for age at menarche. We did not isolate any clear “candidate SNP” 
for age at menopause (Supplementary Figure 36). 

Gene-based GWAS analysis 

We performed gene-based testing with the full GWAS set (~2.5M HapMap-imputed SNPs) 
of both phenotypes using VEGAS (see Supplementary Note and Supplementary Tables 
3,4).23,103 This software has the advantage of accounting for LD structure and the possibility 
to define a range beyond the gene bounds to include intergenic regions in the analysis. We 
defined a 50kb extra window surrounding the genes and considered every SNP for the gene-
based analysis, ran the analyses per chromosome with up to 1006 permutations and considered 
P<2.5x10-06 as the threshold for significance (0.05/~20.000 genes).  

																																																													
1		Data downloaded in November 2015		
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eQTL and meQTL analysis 

For each of the 12 SNPs identified in the GWAS, local (cis, exons/methylation sites < 1 MB 
from the SNP) and genome-wide (trans, exons/methylation sites > 5 MB from the SNP) 
effects were identified by computing Spearman rank correlations between SNPs and local or 
global exons/methylation sites (see Supplementary Note). Bonferroni multiple testing 
correction was performed for the 12 SNPs tested (P<2.5x10-06 for cis meQTL analysis, 
P<1x10-08 for trans meQTL analysis, P<1.2 x10-06 for cis eQTL analysis, P<1.3x10-08 for 
trans eQTL analysis). For each of the significant associations, the exons/methylation sites 
were selected, the strongest eQTLs were identified for these exons/methylation sites, and LD 
between the strongest eQTLs and the corresponding SNP identified in the GWAS were 
computed. LD was computed using BIOS genotypes (the genotypes used for eQTL and 
meQTL mapping).  

Functional variant analysis using RegulomeDB 

We used RegulomeDB27 to identify variants amongst the 322 SNPs that reached P<5x10-08 
for association with AFB and/or NEB in the meta-analysis of GWAS that likely influenced 
regulation of gene expression (see Supplementary Note). RegulomeDB integrates results 
from RoadMap Epigenomics26 and the ENCODE project.104 SNPs showing the most 
evidence of being functional – defined as a RegulomeDB score <4 – were subsequently 
examined in more detail in terms of effects on gene expression (eQTLs) and their protein-
binding capacity (Supplementary Table 6). 

Gene prioritization 

Potentially causal genes for the associations identified by GWAS were identified using four 
previously described bioinformatics tools: ToppGene4, Endeavour5, MetaRanker6, and 
DEPICT7. To this end, we first retrieved positional coordinates for all lead SNPs according to 
GRCh37/hg19 using Ensembl’s BioMart. These coordinates were used to extract all genes 
located within ±40kb of lead SNPs using the UCSC table browser. The identified genes then 
served as input for ToppGene and Endeavour. Genes with established roles in fertility served 
as training genes in this procedure, i.e. BRCA1, EGFR, ERBB2-4, HSD17B1, RBM5, ESR1, 
ESR2 and FSHB. For MetaRanker we provided SNPs that reached P<5x10-04 and their 
chromosomal position as input, together with the previously mentioned set of training genes. 
Since ToppGene, Endeavour and MetaRanker are biased towards larger and well-described 
genes, we also performed a gene prioritization procedure using DEPICT.7 All SNPs that 
reached P<5x10-04 in the meta-analysis served as input, and information on prioritized genes, 
gene set enrichment, and tissue/cell type enrichment were extracted. Genes were 
subsequently prioritized that: 1) reached P<0.05 in DEPICT; or 2) reached P<0.05 in 
ToppGene, Endeavour and MetaRanker (Supplementary Table 37). 

Functional network and enrichment analysis 

DEPICT was used to identify gene set, cell type and tissue enrichment analyses, using the 
GWAS-identified SNPs with P<5x10-04 as input (see Supplementary Note). Due to the 
relatively small number of identified loci, DEPICT was only able to perform these analyses 
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for AFB and NEB pooled, and AFB women. To construct a functional association network, 
we combined five prioritized candidate gene sets into a single query gene set which was then 
used as input for the functional network analysis.24 We applied the GeneMANIA algorithm 
together with its large set of accompanying functional association data.105 We used the 
Cytoscape software platform,106 extended by the GeneMANIA plugin (Data Version: 
8/12/2014, accessed April 24, 2016).107 All the genes in the composite network, either from 
the query or the resulting gene sets, were then used for functional enrichment analysis against 
Gene Ontology terms (GO terms)108 to identify the most relevant GO terms using the same 
plugin.107  

Gene-environment interactions 

Previous research based on twin studies shows differential heritability of fertility behavior 
across birth cohorts.109,110 We used the Swedish Twin Register (STR) to examine whether the 
effect of a polygenic score (PGS) of AFB and NEB varies across birth cohort. We followed 
the analysis presented in the recent GWAS of education111 and divide the sample into six 
groups based on their year of birth. Each group spans five birth years, with the oldest ranging 
from 1929-1933 and the youngest born between 1954-1958. Supplementary Table 38 reports 
the estimated coefficient from these regressions. The results indicate a U-shaped trend in 
AFB and a linear decline in NEB, but do not provide any clear evidence of interaction effects 
between the PGS’s and birth cohort. We additionally tested the interaction effects between 
educational level and the PGS of AFB and NEB in three different samples (LifeLines, STR 
and HRS). Supplementary Table 39 reports the estimated coefficient from these regressions. 
The results indicate that years of education are positively associated with AFB in both 
LifeLines and STR, and negatively associated with NEB in the HRS. With the exception of 
NEB in the HRS, we found no evidence of GxE effects with education. 

Robustness checks 

To estimate the robustness of our results for AFB, we conducted two additional analyses. 
First, we estimated how the coefficients change if we control for Educational Attainment 
(EA). Using data from deCODE, we ran an additional association analysis using the 10 loci 
that were genome-wide significant in the meta-analysis (P<5x10-08). The analysis has been 
restricted to individuals born between 1910 and 1975, who also had data available on 
completed education. The total sample size is 42,187 (17,996 males and 24,191 females). The 
analysis is adjusted for sex, year of birth (linear, squared and cubic), interaction between sex 
and year of birth and the first 10 PCAs. Education is measured by years of education, ranging 
between 10 and 20 years. Supplementary Table 40 reports the association results before and 
after adjusting for educational attainment. Our analysis shows that the effect sizes shrink after 
including educational attainment as a covariate, with an average reduction of around 15%. 
We also estimated the effect of a polygenic risk score of AFB calculated from meta-analysis 
data excluding the deCODE cohort. The polygenic score remains highly significant. The 
effect of 1SD of the AFB score decreases from 0.19 years (69 days) without controlling for 
education to 0.16 years (59 days) when we control for years of education. Second, we 
estimated how the coefficients change after controlling for Education Attainment (EA) and 



	

 26 

Age at First Sex using the UKBiobank (N=50,954). We ran two association models: the first 
follows the GWAS analysis plan with no additional covariates and the second added years of 
education and age at first sexual intercourse as covariates. The results are presented in 
Supplementary Table 41 and Supplementary Figure 37. Our analysis shows that the effect 
sizes of our top hits are highly concordant (R2=0.94). The inclusion of EA and AFS as 
covariates weakens the effect sizes on average by 40% and increases the P-value of the 
estimated coefficients. Overall, we interpret this additional analysis as a robustness test that 
confirm that the top hits from our meta-analysis are robust to the inclusion of the 
confounding factors of EA and AFS. 

Positive selection 

We performed a Haploplotter analysis112 to examine if lead SNPs and/or functional variants 
identified using RegulomeDB show evidence of positive selection. Three variants showed 
standardized integrated haplotype scores <-2 or >2, indicating that these variants represent 
the top 5% of signals in the population. These SNPs are: 1) rs7628058 on chromosome 3 for 
AFB, an eQTLs for RBM6 in monocytes; 2) rs2247510 on chromosome 3 for AFB, an eQTL 
for RBM6 and HYAL3 in monocytes and binding site for a range of transcription factors; 3) 
rs2415984, the lead SNP in the chromosome 14 locus for NEB. Results are presented in 
Supplementary Table 42. 
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1. HUMAN REPRODUCTIVE BEHAVIOR MOTIVATION AND PHENOTYPE  

DEFINITION 

1.1 Phenotype Motivation 

 

Human reproductive behavior – measured by age at first birth (AFB) and number of children 

ever born (NEB) – is a core topic of research across the medical, social and biological 

sciences.1 Two central indicators are the tempo of childbearing of age at first birth (AFB) and 

the quantum or number of children ever born (NEB). NEB is also often referred to in 

biological research as life-time reproductive success,2 number of offspring3 or as ‘fitness’ in 

evolutionary studies, which is the function of the number of children of a person in relation to 

the number of children of peers of the same birth cohort.4,5 Due to improvements in hygiene 

and the reduction in prenatal, infant and child mortality in industrialized societies, NEB has 

emerged as the gold standard to measure lifetime reproductive success indicating biological 

fitness.5 

 

AFB and NEB are complex phenotypes related not only to biological fecundity, but also 

behavioral in that they are driven by the reproductive choice of individuals and their partners, 

and shaped by the social, cultural, economic and historical environment. Genetic factors 

influence the first two factors of biological fecundity and choice, with the social and 

historical environment filtering the types of behavior that are possible (e.g., via contraceptive 

legislation, social norms).  

 

Although interrelated, AFB and NEB, but also childlessness, are distinct phenotypes. Late 

AFB, low NEB or remaining childless is not only due to ‘involuntary’ infertility or factors 

outside of the individual’s control (e.g., inability to find a partner), but also ‘voluntary’ 

choices to remain ‘childfree’.6 In the past four decades there has been a rapid postponement 

by around 4-5 years in the AFB to advanced ages in many industrialized societies7 and a 

growth in childlessness, with around 20% of women born from 1965-69 in Southern and 

Western European countries having no children.8 The biological ability to conceive a child 

starts to steeply decline for some women as of age 25, with almost 50% of women sterile by 

the age of 40.9 Birth postponement and a lower number of children has been largely 
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attributed to social, economic and cultural environmental factors (i.e., individual and partner 

characteristics, socioeconomic status).7,10 Not surprisingly, this delay has led to an 

unprecedented growth in infertility (i.e., involuntary childlessness), which impacts between 

10-15% of couples in Western countries, with men and women affected equally.8 An 

estimated 48 million couples worldwide are infertile,11 with a large part of subfertility, 

particularly in men, remaining unexplained.12 Although therapeutic options for infertility in 

the form of Assisted Reproductive Technology (ART) are available, they are highly 

ineffective at later ages and older mothers have considerably more problems during gestation 

and delivery, also associated with low birth weight and preterm delivery.13–15  Recent studies 

have also linked advanced maternal age to a higher risk of schizophrenia in offspring.16 

 

Childless individuals (and those with a low NEB) are a heterogeneous group consisting of the 

involuntary childless (e.g., infertility, sterility) and voluntarily childless or ‘childfree’ (e.g., 

out of choice). Although primarily related to biological fecundity, involuntary childlessness 

may also be due to circumstantial socio-environmental reasons outside of the individual’s 

control, including a lack of ability to find a stable partner,17  divorce and lack of housing, 

employment or material resources to start a family.18 Those who are voluntarily childless are 

generally considered to have made an active choice or to be endowed with an underlying 

preference19 or personality traits that pull individuals towards or away from parenthood.20 It 

is difficult to disentangle the voluntary from the involuntary, however, since fertility 

intentions can be adjusted in relation to circumstances21 and these modifications are age-

related.22 

 

A better understanding of the genetic architecture of human reproductive behavior and its 

relation to the environment would enable the discovery of predictors of infertility, which 

would in turn greatly improve family planning but also reduce costly and invasive ART 

treatments. Examination of AFB and NEB may also produce a better understanding of the 

biology of human reproduction, which in turn may give insight into fundamental biological 

mechanisms and could have ramifications for the study of many health outcomes, especially 

the etiology of diseases related to the reproductive tract. Furthermore, it is important to 

understand whether and which proportion of these traits are driven by genetic, behavioral and 

environmental factors.  Relatively little is known about the relationship between indicators of 
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women’s reproductive lifespan (menarche, menopause) and reproductive success. A smaller 

and recent study has produced some evidence of the link between age at first sexual 

intercourse (AFS) with AFB and NEB, with a focus on puberty and development.23  

 

By systematically investigating the relationship with genetic variants for a multitude of 

phenotypes related to human reproduction we can establish to what extent diseases related to 

the reproductive tract play a role in human reproduction and vice versa, and begin to chart the 

complex biological and related mechanisms that drive human reproduction. It is therefore 

crucial to examine not only genetic determinants of more biologically proximate phenotypes 

(e.g. age at menarche, endometriosis, PCOS) but also human reproductive behavior and 

success. AFB and NEB represent more accurate and concrete measures of observed 

reproductive success in comparison with proxies which capture the reproductive life span 

(e.g., age at menarche, menopause) or infertility measures (e.g., endometriosis, PCOS).  

 

To our knowledge, the current study is the largest meta-GWAS effort on human reproductive 

behavior, which we launched in early 2012. As mentioned previously, a recently published 

smaller and related study of cohorts also involved in our study focused on age at first sex 

(AFS), also linking it to AFB and NEB (among other traits).23 The AFS study examined how 

individual variation in pubertal timing and personality characteristics related to high risk-

taking and low neuroticism related to reproductive activity and success with AFS measures, 

measures integrated into our examination of genetic correlations (see Supplementary Note, 

section 7).  

 

Several studies have shown promising results for fertility-related outcomes related to both 

infertility and the reproductive life span. Previous research has uncovered a genetic 

component to reproduction with over 70 genome-wide association studies (GWAS) published 

for 32 traits and diseases associated with reproduction (for a review see ref. 24). This includes 

identification of genes such as those related to age at menarche25,26,27, menopause28–32, 

endometriosis33–36 and polycystic ovary syndrome37. This study is the first step towards 

understanding the pathways between genes and the complex relationship between 

reproduction and other phenotypes and the environment.  
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1.2 Evolutionary causes of genetic variance in fertility 

Given the diminishing child mortality rate in contemporary societies, evolutionary biologists 

have used NEB as a proxy for fitness.2,5,38 Additive genetic variance in fitness implies natural 

selection within populations: alleles that lead to higher reproductive success will have a 

higher frequency in future generations.39 Researchers have until now arguably given less 

attention to NEB than it deserves,1 perhaps due to a frequent erroneous interpretation of 

Fisher’s40 Fundamental Theorem of Natural Selection. The theorem states that the increase in 

population mean fitness ascribable to changing allele frequencies is equal to the additive 

genetic variance in fitness. It has often been misinterpreted, however, to mean that the 

additive genetic variance in fitness itself should always be close to zero. A close reading of 

the text shows that Fisher actually argued that fitness is moderately heritable in human 

populations. The misinterpretation of Fisher’s theorem is likely repeated so often due to its 

intuitive appeal. Naively, it may seem that genes that reduce fitness should have been less 

frequently passed on, leading to the elimination of genetic variability in traits such as 

fertility.40,41 Nevertheless, we find that fitness traits such as NEB and AFB have significant 

narrow-sense heritabilities – yet these traits are still not as heritable as morphological traits 

such as height.38,42–44 Several reasons have been put forward to explain the persistent genetic 

variance in fertility. One argument is that new mutations suffice to restore any genetic 

variance lost to selection.45 For the current study design, additional aspects to consider are 

sexual antagonistic genetic effects, non-additive genetic effects, environment and gene-

environment interaction. As discussed in more detail in the Supplementary Note (Section 5), 

the current GWAS was conducted separately for both sexes, with a detailed examination 

explored within that section.   

1.3 Additive genetic variation in fertility 

Several twin and family studies provide evidence for a genetic component underlying both 

the tempo (AFB) and quantum (NEB) of human fertility.1,3 Heritability – the proportion of 

the variance in a trait explained by genetic variance – is typically assessed by a comparison 

of the phenotypic correlations of family members of different genetic relatedness (for 

example genetically identical or monozygotic and genetically fraternal dizygotic twins). The 

genetic component is the extent to which genetically identical twins are more similar in their 

fertility behavior. As summarized in Fig. S1.1, heritability estimates for AFB (for women) 
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are around 0.25 and for NEB ranging from 0.15 to 0.45.1 A recent meta-analysis of all twin 

studies conducted until 201244 shows average heritability of 0.45 (SE = 0.027, N = 50,265) 

among 64 reproductive disease traits of women and of 0.36 (SE= 0.054, N = 9,376) among 

25 reproductive disease traits of men. These mainly pertain to diseases of the genitourinary 

system, endocrine, nutritional and metabolic diseases, and only few directly pertain to 

pregnancy, childbirth and the puerperium.  

 

With the advent of molecular genetic data and complementary analytical tools,46 it has 

become feasible to go beyond twin models to produce heritability estimates to apply the same 

logic to unrelated individuals based on the genetic relatedness matrix across all individuals 

estimated from common SNPs from the whole genome.47,48 A recent study combined data 

from the Lifelines Cohort Study and the TwinsUK to estimate this so called SNP-based 

heritability as the lower bound of narrow sense heritability.38 Results show that 10% of the 

variance in NEB and 15% of the variance in AFB are associated with common additive 

genetic variance. Given that SNP-based heritability is estimated from the same genomic 

information as utilized in GWAS studies, these results suggest that we should be able to find 

genetic variants associated with human fertility when conducting GWAS meta-analyses of 

sufficient sample size. 

 

1.4 Dominant genetic variation in fertility  

GWAS typically assume additive genetic effects. Dominant models, however, are in principle 

also applicable.49 Dominant genetic effects and overdominance (heterozygote advantage) are 

mechanisms which potentially maintain non-additive genetic variation in fertility and other 

fitness related outcomes.40 Dominant genetic effects result if the conditional phenotypic mean 

of the heterozygote is not exactly intermediate between those of the homozygotes. 

Overdominance refers to the special case of the heterozygote possessing a fitness advantage 

over both homozygotes. At the equilibrium under selection, overdominance leads to an 

absence of additive genetic variance. Any deviation from strict additivity within a locus, 

however, should lead to dominance variance that is in principle detectable.45 
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Previous studies approaching the genetic architecture of human fertility almost exclusively 

relied on twin designs.1 Dominant genetic effects are detectable in twin studies if the 

correlation in a trait among identical twins exceeds twice the correlation of fraternal twins. 

Correlations amongst family members, however, can by inflated by shared environmental 

factors and therefore hide dominant effects – a potential reason why previous twin studies did 

not find effects.49 

 

Recently, Zhu and colleagues49 developed a method to estimate dominant genetic effects 

based on the genetic relatedness of unrelated individuals. This is a complementary approach 

to the established GREML analysis, which estimates additive genetic effects on traits. In the 

article of Zhu and colleagues, they quantify dominant relative to additive variance 

components for 79 quantitative traits and find little evidence for dominant effects. We 

applied the GREML model to investigate additive genetic effects on NEB and AFB in 

combined cohorts of women from the TwinsUK and the Lifelines study in the Netherlands.38 

On a slightly larger sample – with a relaxed relatedness cut-off of 0.0550 and the exclusion of 

women younger than 45 for AFB – we replicated previous findings with a SNP-heritability of 

0.09 for NEB and 0.17 for AFB. However, we find no evidence for dominant genetic effects 

𝛿"#$%  for either NEB (0.1x10-06, SE  0.07, P=0.45) nor AFB (0.02, SE=0.08, P=0.43, see 

Supplementary Table 28 for results). We can therefore conclude that due to this lack of 

evidence of dominant genetic effects, it is not problematic that we have excluded dominant 

models in our GWAS.  

 

1.5 Environmental variations in fertility 

Social scientists, such as demographers and sociologists, have attributed later ages of first 

birth, lower NEB and growing levels of childlessness in many industrialized societies almost 

exclusively to socio-environmental factors.7,10 The underlying socio-environmental forces 

shaping fertility can be divided into four main factors. First, the introduction of efficient and 

reliable contraceptives in the early 1960s revolutionized human reproductive behavior, 

namely the ability to control the timing and number of children.7 The diffusion of the pill in 

the late 1960s in the United States resulted in an almost immediate postponement in the age 

of first marriage for college-educated women.51 Contraception allowed women and couples 
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to avoid pregnancy and delay entry into parenthood. Contraceptives were generally widely 

introduced across Western and Northern Europe, Australia and North America in the late 

1960s, which is where the majority of cohorts are situated in the current study.  

 Second, there is a well-documented association between female education and later 

AFB.52 Early research demonstrated a strong inverse relationship between education and 

fertility, with women’s increased participation in higher college and University degrees 

resulting in a significant shift to later AFB.53–55 A central argument driving childbearing 

delay was the difficulty to balance student and mother (parent) roles, but also women’s 

opportunity costs in terms of wages and career progression that they forego when having 

children early.56–58 A third factor, which is interdependent with educational level, is women’s 

labor force participation and attachment. Research has demonstrated an incompatibility of 

early AFB and high NEB with paid labor force participation,59 largely due to work-family 

conflict7 and the high motherhood ‘wage penalty’. In fact, the postponement of AFB results 

in substantial increases in earnings, particularly for higher-educated women.60,61 It is 

estimated that there is a 7% motherhood wage penalty per child, with a year delay of entry 

into motherhood increasing career earnings by 9%.61 

 A fourth factor is the Second Demographic Transition, which encompasses cultural 

and ideational changes surrounding the preferences for and role of children, which is coupled 

with a shift to more individualistic desires for personal development.62,63 Since infant 

mortality rates have fallen sharply in modern societies, extra births are not required for 

insurance against death and children no longer provide the economic support and labor to 

support parents that they once did, which dramatically changes preferences and the need to 

have children.64,65 Multiple national institutional factors have also been shown as related to 

the delay of AFB and the decrease in NEB. This includes changes in the educational systems, 

labor market regulations, gender equity,66 but also economic uncertainty,67 the housing 

market,68 influence by friendship networks,69 family networks and social capital,70 and 

changes in partnering and mating practices.71 The empirical relationship of these factors – 

namely birth cohort and educational level – with genetic risk scores of AFB and NEB is 

elaborated upon in section 10.  
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1.6 Phenotype definition 

The current study measures human reproductive choice by the two phenotypes of: age at first 

birth (AFB) and number of children ever born (NEB). AFB is the self-reported age when 

subjects had their first child. In most cohorts this was asked directly (e.g. “How old were you 

when you had your first child?”). Alternatively, it could also be calculated based on several 

survey questions (such as the date of birth of the subject and date of birth of the first child). 

Supplementary Table 2 describes in detail the exact question asked for each cohort and if 

applicable, whether and how it varies in the way it was asked to men and women. Often these 

questions were part of a medical questionnaire about women’s reproductive health. In a large 

number of cohorts, this means that only women were asked this question. For this reason, the 

sample size for AFB for women is considerably larger than for men. Note that only people 

who have had at least one child (parous) are eligible to be included for the analysis of this 

phenotype. 

 

Number of children ever born (NEB) was the self-reported number of children. This 

phenotype was either asked directly (e.g. “How many children do you have?” or “How many 

natural (biological) children have you ever had, that is, all children who were born alive?”, 

or “How many children have you had - not counting any step, adopted, or foster children, or 

any who were stillborn?”) or it was calculated based on several survey questions (such as 

pregnancy histories and outcomes, number of deliveries). In most cases it was possible to 

distinguish between biological (live born or stillborn) and adopted or step-children. When it 

was possible to distinguish between cases, we used the number of live born biological 

children. We included cases for NEB if they finished their reproductive career (aged at least 

45 for women and 55 for men at time of study) and were thus unlikely to have future 

biological children. 

 

1.7 Instructions for contributing cohorts 

The instructions given to cohorts who agreed to participate in our study is described in detail 

in the original Analysis Plan that was posted on the Open Science Framework preregistration 

site, described in detail in Supplementary Note Section 2.1 and uploaded December 9, 2013 

at: https://osf.io/53tea/.  For ease of analysis, we advised that AFB should be treated as a 



12 

 

continuous measure. When possible, we asked analysts to use the more direct question: How 

old were you when you had your first child? Another variant of this question is: What is the 

date of birth of your first child? In the case of the latter, we advised them to create the AFB 

variable by subtracting the date of birth of the first child from the date of birth of the subject. 

 

Analysts then normalized the raw measure of the age at first birth for sex/ birth cohort 

specific means and standard deviations. In other words, we asked them to compute a mean 

and standard deviation separately for men and women by birth cohort category (generally 

ten-year intervals) and then subtract the mean value for that group from the respondent’s 

value. They should then divide the result by the standard deviation.  This was used as the 

final AFB variable measured in sex/cohort specific Z-score and is our regressand. 

 

Analysts were asked to include birth year of the respondent (represented by birth year – 

1900), its square and cubic to control for non-linear birth cohort effects. Combined analyses 

that included both men and women also needed to include interactions of birth year and its 

polynomials with sex. Some cohorts only used birth year and not its polynomials because of 

multi-collinearity issues/convergence of the GWA analysis.  
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2. PRIMARY GWAS OF HUMAN REPRODUCTIVE BEHAVIOR 

2.1 Overview of human reproductive behavior analyses 

The genome-wide association study (GWAS) of human reproductive behavior is based on the 

summary statistics that were uploaded to a central server by cohort-level analysts. As 

outlined in more detail in Section 1 of the Supplementary Note, our analysis includes the two 

phenotypes of age at first birth (AFB) and number of children ever born (NEB), with analysts 

producing results for women, men and combined analyses of both sexes, also including birth 

cohort as a covariate. The summary statistics were then subsequently quality-controlled and 

meta-analyzed by two separate independent centers at the University of Oxford and Erasmus 

University Rotterdam.  

 

We follow the QC protocol of the GIANT consortium’s recent study of human height72 and 

employed the software packages QCGWAS73 and EasyQC74, which allowed us to harmonize 

the files and identify possible sources of errors in association results. This procedure entailed 

that diagnostic graphs and statistics were generated for each set of GWAS results (i.e., for 

each file). In the case where apparent errors could not be amended by stringent QC, cohorts 

were excluded from the meta-analysis (see the bottom of Supplementary Table 1 for a list of 

excluded cohorts).  

 

The lead PI of each cohort confirmed that the results on these analyses were approved by the 

local Research Ethics Committee and/or the relevant Institutional Review Board. All 

participants fell under the written informed consent protocol of each participating study. The 

entire project was also approved by the local Research Ethics Committee of the PI.  

 

We first circulated three documents to interested cohorts at the end of April 2012, which 

included: (a) Rationale for a GWAS of Fertility Behavior, (b) GWAS Fertility Behavior 

Analysis Plan; and, (c) Collaboration Agreement for Fertility GWAS Meta-analyses. This 

was after a meeting and approval from the REPROGEN working group of the CHARGE 

consortium on Dec. 9, 2011 that we were not competing with or unduly replicating existing 

efforts. Preliminary results were presented at various CHARGE meetings between the years 



14 

 

of 2012-2015. This study was initially set up as a two-stage GWAS with a large discovery 

and smaller replication phase. Due to an increasing influx of new data, we opened the 

participation to cohorts that had genome-wide data, but also to cohorts that had Metabochip 

data. We also included a list of 15 independent SNPs with P<10-06 for cohorts that did not 

have genome-wide data available but could perform de-novo replication on a limited number 

of SNPs. Agreements at a later stage included data from RPGEH (Kaiser Permanente 

Research Program on Genes, Environment, and Health, REPEGH/GERA), N(AFB 

women)=31,898, N(NEB women)=39,576), deCODE (N(AFB pooled)=60,602, N(NEB 

pooled)=65,228), and UK Biobank (N(AFB women)=40,082, N(NEB pooled)=88,094). 

Given the resulting well-powered total sample size of N≈250k for AFB and N≈340k for NEB, 

we chose to merge the discovery and replication cohorts into a single large discovery phase, 

as in other recent well-powered GWAS efforts.72,75,76 We also opted to include only cohorts 

with genome-wide data in the meta-analysis, leaving the remaining cohorts that performed 

de-novo replication for follow-up analysis.  

 

2.2 Participating Cohorts  

A total of 62 cohorts contributed to this study. Cohorts with acceptable measures of AFB 

and/or NEB were eligible to participate. Some measured one or both of the phenotypes, and 

there was also variation by whether the question was asked to women and/or also men. 

Supplementary Table 1 provides an overview of the study-specific details of all analyses 

conducted for the traits of interest. Cohorts of unrelated individuals uploaded separate results 

for men and women. In addition to sex-specific association results, family-based cohorts 

uploaded pooled results. As described in the Supplementary Note (Section 1), particularly 

AFB is less frequently asked of men. The total number of association-result files per trait is 

as follows. We have 28 files for AFB men, 57 for AFB women, 72 for AFB pooled, 50 for 

NEB men, 67 for NEB women, and 102 for NEB pooled. 

 

As Supplementary Table 1 shows, most cohorts were included in the meta-analysis (i.e., 62 

cohorts are included, constituting 26 files for AFB men, 50 for AFB women, 64 for AFB 

pooled, 47 for NEB men, 60 for NEB women, and 91 for NEB pooled) and some only in the 

follow-up analyses (9 cohorts, constituting 2 files for AFB men, 5 for AFB women, 6 for 
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AFB pooled, 3 for NEB men, 5 for NEB women, and 9 for NEB pooled). We had to exclude 

the association results of two cohorts – ABCFS (AFB women, N=410, NEB women, N=410) 

and Longenity (AFB women, N=285; NEB women, N=352) –  from the meta- and follow-up 

analyses due to unresolvable issues with the cohort’s association results that came up in the 

quality control procedures. For more details regarding the reasons for exclusion, see SI 

Section 2.6. 

 

2.3 Genotyping and Imputation 

Supplementary Table 1 gives an overview of the study-specific details on pre-imputation 

quality control filters applied to the genotype data, subject-level exclusion criteria, imputation 

software used, and the reference sample for imputation. Due to the fact that we started our 

study in 2012 before 1000G imputation, our analysis plan recommended using resulted 

imputed using the HapMap 2 CEU (r22.b36) reference sample.77 

 

2.4 Association analyses 

Cohorts were asked to only include participants of European ancestry, with no missing values 

on all relevant covariates (sex, birth year, and cohort specific covariates), who were 

successfully genotyped genome-wide (e.g., genotyping rate greater than 95%), and who 

passed cohort-specific quality controls (e.g., no genetic outliers). 

 

Cohorts used the fully imputed set of HapMap Phase 2 autosomal SNPs, and estimated an 

additive linear model, including top principal components to control for population 

stratification and cohort specific covariates if appropriate. They were specifically instructed 

to control for population stratification for ancestry principal components with reference to 

Price et al. (2006).78 In addition, cohorts were requested to include the birth year of the 

respondent (represented by birth year – 1900), its square and cubic to control for non-linear 

birth cohort effects. Analyses pooling data across sexes also needed to include interactions of 

birth year and its polynomials with sex. Some cohorts only used birth year and not its 

polynomials because of multi-collinearity issues/convergence of the GWA analysis. 

Omission of these nonlinear birth year effects is unlikely to lead to biased inferences, since 
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genotypes are not usually considered as truly associated with birth year. However, inferences 

might be less accurate (i.e., have larger standard errors), since omission of nonlinear birth 

year effects can lead to larger residual variation. 

2.5 Quality Control  

In this section, we summarize the main steps and diagnostic tests of the Quality Control (QC) 

procedure. The quality control was conducted in two separate independent analysis centers 

(Oxford/Groningen and Rotterdam). Once data were submitted, each study was 

independently subjected to quality control in the two analyses centers according to standard 

protocols. We followed the QC protocol of the GIANT consortium’s recent study of human 

height72 and the SSGAC’s study of educational attainment.76,79 

 

Since this study began, QC procedures have become more stringent. Recently, a 

comprehensive set of guidelines for GWAS QC was released.7 For the cohorts initially 

included in the study a first round of QC was performed using the R package QCGWAS73. 

We updated the QC protocol based on the GIANT consortium’s and SSGAC’s protocols. The 

updated QC protocol was applied to all cohorts using the R package EasyQC.74 Findings of 

the first round of QC were used as a starting point for the updated QC. 

 

In the QC procedure, diagnostic graphs and statistics were generated for each set of GWAS 

results (i.e., for each result file uploaded by the cohort analysts). Most errors (e.g., coded 

allele reported as other allele and vice versa) could be easily addressed. When apparent errors 

could not be amended by combining stringent QC with file-specific inspections and 

corrections, cohorts were excluded from the meta-analysis. For details on cohort inclusion 

and exclusion, see Supplementary Table 1. 

 

Filters 

We harmonized base pair positions of the markers across files using NCBI build 37. For each 

result file, a given marker was excluded in case: 
1. The combination of chromosome and base-pair position could not be uniquely linked to the HapMap Phase II CEU panel.  

2. The marker had missing or incorrect values.  Specifically, 

a. the effect allele and other allele were missing, 
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b. the association p-value was missing or outside the unit interval, 

c. the effect estimate was missing or reported to have infinite magnitude, 

d. the standard error (SE) of the effect estimate was missing, negative, or infinite, 

e. the allele frequency was missing or outside the unit interval, 

f. the sample size was not reported, or zero or below, 

g. the reported callrate was outside unit interval, 

h. the reported imputation quality was negative, and 

i. the reported imputed dummy was not binary. 

3. The marker was not a SNP, not biallelic, non-autosomal, and/or monomorphic. 

4. The sample size was below 30.  

This filter is to guard against spurious associations due to overfitting of the model. 

5. The minor allele count was 6 or below.  

This filter is to guard against spurious associations with low-frequency SNPs in small samples. The risk of spurious 

associations has shown to be particularly high for SNPs that are extremely rare7.  

6. Minor allele frequency (MAF) was below 1%.  

For all the cohorts, we dropped SNPs with a MAF below 1%. For small cohorts we applied more stringent filters based 

on diagnostic tests and figures. 

7. The SE of the effect estimate was greater than 100 𝑁. 
Based on the approximation to the expected standard error by Winkler et al.7, we calculated that an SE greater than 

100 𝑁 is at least 40% greater than the expected SE of the estimated effect of a SNP with a MAF of 1% for a trait with 

standard deviation of 10. Since in our analyses we only consider SNPs with MAF≥1% and traits with a standard deviation 

below 10, an effect estimate with an SE greater than 100 𝑁 can be considered to be unreasonably large.  

8. The R2 of the marker with respect to the phenotype was greater than 10%. 

We excluded SNPs for which the estimated R2 was greater than 10% (Supplementary Information in Rietveld et al.79) 

because such an R2 would defy all upper bounds on reasonable effect sizes of SNPs. 

9. The marker was imputed while imputation quality was missing. 

10. The marker was imputed while imputation quality was below 0.4.  

For all the cohorts, we dropped imputed SNPs with an imputation quality below 0.4. For several cohorts we apply more 

stringent filters based on diagnostic tests and figures. 

11. The callrate was below 95%.  

12. The SNP was genotyped and not in Hardy-Weinberg Equilibrium (HWE). 

We excluded genotyped SNPs if they fail the HWE chi-squared test. Violation of HWE will lead to lower chi-squared p-

values as sample size increase, the threshold is therefore sample-size dependent. We applied an HWE p-value threshold 

of 10-03 in case N < 1,000, 10-04 in case 1,000 ≤ N < 2,000, 10-05 in case 2,000≤N<10,000, and no filter in case N≥ 

10,000). 
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Diagnostic checks 

For the SNPs remaining after applying the filters of steps 1 – 12, we generated five key 

diagnostic graphs: 
1. Allele frequency (AF) plots. – to identify errors in allele frequencies and strand orientations. 

The AF plot shows the expected AF (based on the HapMap II CEU2 reference panel or the 

1000 Genomes Phase 1 European panel in case of 1000 genomes imputed data) versus the 

reported AF. 
2. Reported P-values versus P-values of the Z-scores (PZ) plots – to assess the consistency of the reported P-values with 

respect to those implied by the effect estimates and the corresponding standard errors. 

3. Quantile-Quantile (QQ) plots – to check for evidence of unaccounted population stratification. 

4. Reported Standard Error versus Expected Standard Error (SE) plots – to assess whether the reported standard errors 

behave in line with the approximation of the expected standard errors provided by Winkler et al.74 , implemented as a QC 

step by Okbay et al.80  

 

These diagnostic plots were examined by two independent analysts. If problems were 

detected which could not be resolved by more stringent thresholds, we applied the following 

ad hoc filters (descending order in terms of frequency used).  

 
1. MAF filters more stringent than the generic MAF filter (e.g., 5% instead of 1%). 

2. Imputation quality filters more stringent than the generic filter (e.g., 0.8 instead of 0.4). 

3. Filter on the absolute difference between expected (based on the HapMap II CEU2 reference panel or the 1000 Genomes 

Phase 1 European panel in case of 1000 genomes imputed data) and reported allele frequencies. This filter helps to remove 

clear outliers in the AF-plots (e.g., strand-ambiguous SNPs that are likely to have been reverse-coded). 

4. Filter on the absolute difference between the reported log(P-value) and the log(P-value) derived from the report Z-score. This 

filter helps to remove clear outliers in the PZ-plots. Such outliers can arise when software such as SNPTEST13 switches to 

another estimation method, for reasons such as poor convergence of the estimates. 

 

For a list of the filters used per cohort, per association file, see Supplementary Table 27, 

which reports the total number of markers prior and post-QC when applying the described 

generic and specific filters, for each set of association results. 
 

The AF plots for ABCFS (N=410 for AFB and NEB) shows a strong anti-diagonal that 

persists when considering only genotyped markers, implying that reverse-coded SNPs are 

likely to have been used for imputation, thereby yielding poorly imputed SNPs. 

Consequently, we exclude the ABCFS result files from the meta-analyses. In addition, for 

Longenity (N=285 for AFB and N=352 for NEB) many SNPs have far greater standard errors 
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for the effect estimates than expected, as well as callrates substantially below 95%. When 

applying QC to Longenity, only several hundreds of SNPs are left after QC. Consequently, 

we also exclude Longenity results from the meta-analyses. 

 

2.6 Meta analyses 

Cohort association results (after applying the QC filters) were combined using sample-size 

weighted meta-analysis, implemented in METAL.81 Sample-size weighting is based on Z-

scores and can account for different phenotypic measurements among cohorts.82 The two QC 

centers agreed in using sample-size weighting to allow cohorts to introduce study-specific 

covariates in their cohort-level analysis.  Only SNPs that were observed in at least 50% of the 

participants for a given phenotype-sex combination were passed to the meta-analysis. SNPs 

were considered genome-wide significant at P-values smaller than 5×10-08 (α of 5%, 

Bonferroni-corrected for a million tests. The meta-analyses were carried out by two 

independent analysts. Comparisons were made to ensure concordance of the identified 

signals between the two independent analysts. The PLINK clumping function83 was used to 

identify the most significant SNPs in associated regions (termed “lead SNPs”). 

 

The total sample size of the meta-analysis is N=251,151 for AFB pooled and N=343,072 for 

NEB pooled. Although considered to be separate from our main pooled results, we also 

performed separate meta-analyses for 

 
• AFB women (N=189,656), 

• AFB men (N=48,408), 

• NEB women ( =225,230), 

• NEB men (N=103,909) 

 

The sex-specific results are discussed in more detail in Supplementary Note, Section 5. To 

understand the magnitude of the estimated effects, we used an approximation method to 

compute unstandardized regression coefficients based on the Z-scores of METAL output 

obtained by sample-size-weighted meta-analysis, allele frequency and phenotype standard 

deviation. Further details of the approximation procedure are available in the Supplementary 

Information of Rietveld et al.79 
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Figure S2.1.1. to Figure S2.13.2 contains the forest plots and regional association plots of all 

genome-wide significant SNPs, the latter created by LocusZoom plots.84 The forest plots 

provide a visualization of the effect size estimates for each cohort and the summary meta-

analysis (red rectangle) in addition to the 95% confidence intervals. As would be expected, 

small cohorts have larger confidence intervals. LocusZoom plots provide a graphic depiction 

of the local association results and include information about the locus, the location and 

orientation of the genes it includes, LD coefficients and the local estimates of recombination 

rates. 
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3. BIVARIATE AND CONDITIONAL ANALYSIS OF THE TWO FERTILITY-

RELATED TRAITS 

 

As joint analysis of correlated traits may boost power for mapping functional loci, we applied 

a recently developed multi-trait analysis method85 to test the association between each variant 

and the two correlated traits AFB and NEB simultaneously using multivariate analysis of 

variance (MANOVA). The analysis was performed based on the genome-wide meta-analysis 

summary statistics of each single trait. The joint analysis did not reveal additional genome-

wide significant loci (𝜆=0.995), however, such bivariate analysis, accounting for the 

correlation between the two phenotypes, improved the strength of two signals on 

chromosomes 1 and 5, indicating possible pleiotropic architecture between the AFB and NEB 

(Supplementary Figure 30).  

 

The analysis also provides a conditional association test of the genetic effect of each variant 

on AFB including NEB as a covariate, and that on NEB including AFB as a covariate. The 

conditional analysis also did not reveal additional genome-wide significant loci 

(Supplementary Figure 31). Nevertheless, adjusting for NEB eliminated the three genome-

wide significant loci on chromosomes 1, 2 and 6 for AFB, and adjusting for AFB eliminated 

the two genome-wide significant loci on chromosomes 1 and 14 for NEB, which may 

indicate underlying pleiotropic effects on both traits across these loci. 
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4. TESTING FOR POPULATION STRATIFICATION 

 

Population stratification can severely bias GWAS estimates for causal variants and lead to 

false positives. This can occur if a particular variant of a SNP is more common in a particular 

subpopulation and if there are mean differences in the phenotype of interest between 

subpopulations due to factors that do not involve that SNP.  As described in Supplementary 

Note Section 2, all cohorts in the GWAS  of AFB and NEB included the top principal 

components78 in their analyses to account for population stratification. Even despite this 

inclusion, residual stratification could still remain and affect the results.  

 

To test the extent of this problem, we used two methods to assess if our GWAS results for 

AFB and NEB exhibit signs of population stratification. First, we used the LD Score intercept 

method described in Bulik-Sullivan et al..86 Second, we conduct a series of individual and 

within-family (WF) regressions using polygenic scores (PGS) as predictors87–89 on a dataset 

of DZ twins (STR and TwinsUK).  Within-family regressions are based on family differences 

in PGS for AFB and NEB and are therefore are not affected by population stratification. We 

compare the coefficients of individual and WF regression using different p-value thresholds 

for the construction of PGS. Polygenic scores are based on independent results (i.e. meta-

analysis results excluding STR and TwinsUK). Additional information on how we computed 

our PGS are available in Section 7 of the Supplementary Note.  

 

4.1 LD Score Intercept Test  

The LD Score intercept test uses GWAS summary statistics for all measured SNPs. LD Score 

regression is a method that can disentangle inflation in the chi-square statistics that is due to a 

true polygenic signal throughout the genome from inflation that is due to confounding biases 

such as cryptic relatedness and population stratification. The inflation due to a true polygenic 

signal impacts the slope of the LD regression, whereas inflation due to population 

stratification and other confounding biases affects the intercept of the regression. 
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We used the LDSC software86,90 to estimate the intercepts in LD Score regressions with the 

summary statistics of our GWAS of: (i) AFB (pooled sample), (ii) NEB (pooled sample), (iii) 

AFB (women), (iv) AFB (men), (v) NEB (women), and, (vi) NEB (men). We estimated a 

separate LD Score regression for each of the phenotypes using the summary statistics from 

the meta-analyses based on all available data.  

 

For each phenotype, we used the “eur_w_ld_chr/” files of LD Scores computed by Finucane 

et al.91 available on https://github.com/bulik/ldsc/wiki/Genetic-Correlation. These LD Scores 

were computed with genotypes from the European-ancestry samples in the 1000 Genomes 

Project using only HapMap3 SNPs. Only HapMap3 SNPs with MAF > 0.01 were included in 

the LD Score regression.  

 

Because genomic control (GC) will tend to bias the intercept of the LD Score regression 

downward, we did not apply GC to the summary statistics we used to estimate the LD Score 

regression. Furthermore, we excluded the deCODE cohort from the data for the estimation of 

the LD Score intercept for AFB and NEB, since the cohort-level regression estimates for 

deCODE did not directly correct for the high level of relatedness in the sample (their standard 

procedure is to apply GC). Our intercept estimates from the LD Score regressions are thus 

unbiased measures of the amount of stratification there is in the data (excluding deCODE) 

that we used for the GWAS of each phenotype.  

 

Supplementary Note Figures 4.1 and 4.2 show LD Score regression plots based on the 

summary statistics from the GWAS of AFB, and NEB. For AFB, we estimated a LD Score 

intercept of 1.0216 (SE=0.008) and for NEB, 1.009 (SE = 0.006). In all six cases, the 

intercept estimates are not significantly different from 1. By comparison, the mean 𝜒
2
 

statistics for all the SNPs in the LD Score regressions are 1.239 for AFB and 1.141 for NEB. 

Under the null hypothesis that there is no confounding bias and that the SNPs have no causal 

effects on the phenotypes, the mean 𝜒
2
 statistics would be one, thus mean 𝜒

2
 statistics greater 

than one indicate that some SNPs are associated with the phenotypes. These estimates imply 

that about 9% of the observed inflation in the mean 𝜒
2 statistics for AFB and  about 6% of the 
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inflation for NEB is accounted for by confounding bias (due to relatedness, or other 

confounds) rather than a polygenic signal.  

 

As described in Section 2 of the Supplementary Information, we applied the standard single 

GC correction to produce our main estimates.  Once a single GC is applied, the LD score 

regression estimates indicate negligible confounding bias due to population stratification. The 

LD score intercept for AFB is 0.9618 (SE= 0.0077) and for NEB 0.9763 (SE=0.0068). We 

can therefore conclude that the amount of inflation in our final results due to confounding 

bias is likely to be negligible.   

 

4.2 Statistical Significance of the Polygenic Scores in a WF regression 

To test the robustness of our all-SNP polygenic scores calculated with a set of SNPs meeting 

several different threshold P-values (5e-08, 5e-07,5e-06, 5e-05, 5e-04, 5e-03, 5e-02, 5e-01, 

all SNPs), we estimated WF regressions of AFB and NEB on each polygenic score in 

samples that are independent from those used to construct the scores. For each WF 

regression, we also compared the estimated coefficient on the polygenic score to the 

corresponding coefficient from individual-level regression.  

 

For both the individual-level and WF regression, we standardized NEB and AFB on 

birthyear, birthyear squared, birthyear cubic, sex and the first 10 PCAsa. Our regressions are 

based on 7,944 twin couples for AFB and 9,220 twin couples for NEB. Supplementary Note 

Figures 4.1, 4.2 and Supplementary Tables 30, 31 report the results.  

 

The regression analyses show that WF regression coefficients for both AFB and NEB are 

statistically different from zero when the p-value threshold is sufficiently far from zero. 

When including all SNPs, both coefficients for AFB and NEB are larger than zero, 

confirming that the GWAS analyses uncovered true polygenic signals. Overall, these results 

indicate a minimum effect of population stratification and the existence of polygenic signals.  

                                                
a Details on the construction of polygenic scores is available in section 6 of the Supplementary Note.  
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5. SEX-SPECIFIC GENETIC EFFECTS IN HUMAN REPRODUCTIVE 

BEHAVIOR  

Sex-specific genetic effects have been proposed as an important source of variation for 

complex human traits.92,93 For this reason we also ran sex-specific GWAS meta-analyses for 

both AFB and NEB and examined the genetic overlap among sexes using LD score bivariate 

regression and GCTA. Sex-specific effects refer to large differences in average phenotypes or 

biological processes known to differ between the sexes (e.g., hormonal effects). Since AFB 

and NEB are not only biological but also socio-behavioral phenotypes, it is likewise 

important to make a distinction between sex- versus gender-specific effects. Sex refers to 

biological differences between males and females, which often have their underpinnings in 

human reproduction.94 Gender refers to the socially constructed differences between men and 

women that may give rise to particular behavioral outcomes (e.g., gender-specific social 

norms regarding alcohol consumption or occupational choice). There is growing evidence 

that biological (sex) and social (gender) processes are interrelated, which in turn impacts the 

phenotypes we are examining.95 Although we recognize the importance of these distinctions, 

it is beyond the scope of the current study to disentangle sex- versus gender-effects. Rather in 

this section, we emphasize similarities and differences in the sex-specific GWAS results and 

examine the sex-specific genetic overlap of these traits.  

 

There are several key sex-specific differences in AFB and NEB. Women in contemporaneous 

populations have a comparatively lower age at first birth than men, which is attributed factors 

such as the persistent age gap between partners.96 Fecundability is strongly influenced by 

sex-specific hormonal processes and gender-specific diseases. Sex can modify both 

penetrance and expressivity of a wide variety of traits.97,98  Sex-genotype interactions can 

also theoretically act to maintain genetic variation in a population.99 Sexual antagonism, 

which is the existence of opposite genotypic effects among sexes, has been often theorized as 

one of the possible explanations for genetic differences in fertility.100 In other words, 

particular genes might influence men and women differently and could thus still be 

transmitted to the next generation. Genes that contribute to the fecundability of men may 

therefore be inherited via women’s lineage and those for women via men’s lineage.101  
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5.1 Sex-specific GWAS meta-analyses for AFB and NEB 

 

In addition to the pooled GWAS results presented in the main text, we also ran sex-specific 

GWAS meta-analyses for AFB and NEB.  The sample size for sex-specific analysis is: AFB 

women, N=189,656; AFB men, N=48,408; NEB women N=225,230; NEB men N=103,909. 

Our results indicate 6 genome-wide significant (P<5x10-08) independent SNPs for AFB 

women and 1 genome-wide significant independent SNP for NEB men. We do not find any 

genome-wide significant loci for AFB men and NEB women. Among the 6 hits for AFB 

women, 5 are also significant in the AFB pooled analysis, while 1 hit on chr8 (rs2721195; 

chr8: 145677011) is specific for women. We find a single independent SNP for NEB men 

(rs13161115; chr5:107050002) that reaches genome-wide statistical significance (P-

value<5x108), which is not significant in the NEB pooled analysis.  Supplementary Figure 34 

shows the Miami plots for AFB and NEB sex-specific analyses. Supplementary Figure 35 

depicts the QQ plots of men and women’s meta-analyses for AFB and NEB. The figure 

shows a noteworthy departure from the null hypothesis of no statistical association, in 

particular for the analysis of AFB women. 

 

Table 1 (in the main text) shows the sex-specific signals respectively for AFB and NEB. The 

effects of all significant hits in AFB have the same direction for both men and women. The 

single locus found in NEB men (rs13161115) has an opposite effect on NEB for women, 

although the p-value associated with its effect size in NEB for women does not reach 

statistical significance.  

 

5.2 Genetic overlap among sexes using LD score bivariate regression 

We used LD score bivariate regression8 to estimate the genetic correlation among men and 

women based on the sex-specific summary statistics  of AFB and NEB meta-analysis results. 

For each phenotype, we used the “eur_w_ld_chr/” files of LD Scores computed by Finucane 

et al. and made available on https://github.com/bulik/ldsc/wiki/Genetic-Correlation. These 

LD Scores were computed with genotypes from the European-ancestry samples in the 1000 

Genomes Project using only HapMap3 SNPs. Only HapMap3 SNPs with MAF>0.01 were 

included in the LD Score regression. Our estimates indicate a genetic correlation of rg=0.86 
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(SE=ì0.052) among sexes for AFB and rg=0.97 (SE=0.095) for NEB. These results indicate a 

large genetic overlap among sexes for both AFB and NEB, which is statistically different 

from zero. We additionally test whether these genetic correlations support the null hypothesis 

of complete genetic overlap among sexes (rg=1). We reject this null hypothesis for AFB, 

indicating sex-specific genetic variants for AFB.  We do not find any evidence of sex-specific 

signals for NEB.  

5.3 Genetic overlap among sexes using GCTA 

We additionally estimate the degree of genetic overlap among sexes using Genomic-

Relatedness-Matrix Maximum Likelihood (GREML)46 on six cohorts for which we have 

direct access to genotypic data.46,47,102–104  For the GREML analyses, we combine data from 

six cohorts: HRS, EGCUT, QIMR Lifelines Cohort Study, TwinsUK and STR 

(Nwomen=20,966; Nmen=17,024, see Supplementary Table 33 for descriptive statistics). We 

used GCTA46 to construct a Genome-wide Relatedness Matrix (GRM) 𝑨𝒏×𝒏 and estimate the 

models. For quality control (QC), we included in the analysis only HapMap3 SNPs with an 

imputation score larger than 0.6. We additionally excluded SNPs with a missing rate larger 

than 5%, MAF lower than 1% and which failed the Hardy-Weinberg equilibrium test for a 

threshold of 10./0. We applied these QC steps for each cohort and repeated again on the 

merged dataset. After QC, 847,278 SNPs could be utilized to estimate the GRM between 

individuals.  

 

5.4 Bivariate GREML analysis 

First, we fit a bivariate GREML model as proposed by Lee et al.104 treating the fertility traits 

of men and women as different traits.102 To account for potential country heterogeneity, we 

estimated genetic variation from within cohorts only (𝜎2_45% ), setting the GRM between 

individuals from different cohorts equal to zero.50 This allows us to avoid the potential bias 

due to differences in allele frequency across different countries. The GRM can be depicted as 

a block matrix composed by six within-cohort GRMs (𝐀𝒈𝒘𝒄) containing only values for pairs 

of individuals within cohorts.  

 

The variance-covariance matrix of the bivariate model is shown as: 
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𝑽 𝒇𝒎𝒆𝒏
𝒇𝒘𝒐𝒎𝒆𝒏

 = 
𝑨𝒘𝒄_𝒎𝒆𝒏𝜎2_45_?@A% + 𝐈𝜎@_45_?@A%

𝑨𝒘𝒄_𝒎𝒆𝒏_𝒘𝒐𝒎𝒆𝒏𝜎2_45_?@A_4D?@A%
						𝑨𝒘𝒄_𝒎𝒆𝒏_𝒘𝒐𝒎𝒆𝒏𝜎2_45_?@A_4D?@A%

								𝑨𝒘𝒄_𝒘𝒐𝒎𝒆𝒏𝜎2_45_4D?@A% + 𝐈𝜎@_45_4D?@A%  

 

whereas 𝒇𝒎𝒆𝒏  and 𝒇𝒘𝒐𝒎𝒆𝒏  are vectors of length 𝑁?@A	𝑎𝑛𝑑	𝑁4D?@Aof fertility phenotypes 

(NEB or AFB), with N being the respective sample size of the subsets, 𝑨𝒘𝒄_𝒎𝒆𝒏_𝒘𝒐𝒎𝒆𝒏 is the 

within population GRM for all individuals, 𝑨𝒘𝒄_𝒎𝒆𝒏 is the within cohorts GRM for men, and 

𝑨𝒘𝒄_𝒘𝒐𝒎𝒆𝒏  for women. The parameter 𝜎2_45_?@A%  is an estimate of the genetic variance 

component for men and 𝜎2_45_4D?@A%  and 𝜎2_45_?@A_4D?@A%  the genetic covariance across 

sexes. 𝐈  is the identity matrix, and 𝜎@_45_4D?@A% , 𝜎@_45_?@A%  the respective, sex-specific 

residual variances within cohorts. We present the variance components standardized for the 

phenotypic variance 𝜎I%. The correlation of the genetic factors are estimated as:  

𝑟KL_MN_OPQ_MROPQ
S = 𝜎2_45_?@A_4D?@A% / 𝜎2_45_?@A% ∗ 𝜎2_45_UV?@A%  

 

We find significant heritability for NEB and both sexes 𝜎2_4I% /𝜎$% = 0.13 (SE=0.057, P=0.01) 

for men, and 0.08 (SE=0.04, P=0.01) for women (see Supplementary Table 34 for full 

results). This means that around 10% of the variance in NEB is explained by common SNPs 

for both sexes. The estimated genetic correlation across sexes is 0.98 (SE=0.44) and a 

likelihood ratio-test against a perfect genetic correlation across sexes has a p-value of 0.5. We 

therefore cannot reject the null-hypothesis that genetic effects are the same across sexes. 

 

For AFB we find a very similar pattern of sex specific SNP-based heritabilities of around 

0.10 and a genetic correlation of 1.00 (SE=0.67, P=0.5 when testing against 1). These results 

also cannot reject the null-hypothesis that genetic effects on AFB are the same across sexes. 

 

5.5 Analysis of differences between sample and effect sizes 

Table 1 in the main text did not include the Ns of the sex-specific analyses. It is, however, 

important to place the p-value of women and men in context and clarify why the effect size 

for some loci is similar in men and women but the p-value is not. This could reflect a 

difference in sample size, or it may reflect a difference in variance. Supplementary Table 32 

shows all of the sex-specific sample sizes, p-values, z-scores and the p-value differences 



 

29 

 

between males and females by each SNP. It indicates sex-specific effects and a statistical test 

showing the differences between effect sizes.   

 

The statistical test is based on the differences between male and female Z-scores: 

𝑍XYZZ =

𝑍\
𝑁\

+ 𝑍%
𝑁%

1
𝑁\

+ 1
𝑁%

~𝑁(0,1) 

Supplementary Table 32 reports the P-value differences of this Z-score test. Despite the fact that p-

values differ among the sexes, it seems plausible that the differences are mainly due to variation in 

sample size and not attributed to different effect sizes. Our results show that the only locus that has a 

statistically different effect between men and women after taking into account the number of test 

conducted is rs13161115 in chromosome 5, where the effect is significant only in men and the 

direction of the effect differs among sexes. 

 

5.6 Discussion 

Sex-genotype interactions and sexual antagonistic effects may affect the transmission of traits 

across generations and has been proposed as a possible source of genetic variation in fertility 

traits.101 Fecundability is strongly influenced by sex-specific hormones and infertility causes 

differ between men and women.105 Our results show little differences in the genetic 

architecture of the fertility traits (AFB, NEB) of our study between men and women. Out of 

12 independent loci for AFB and NEB, only two have a sex-specific effect. Moreover, all the 

signals found for AFB and two out of three signals in NEB, have a consistent direction across 

the sexes. We found a high genetic correlation among men and women for both AFB and 

NEB, both using LDscore bivariate regression and GREML bivariate analysis. This suggests 

that most of the genetic effect of fertility due to common SNPs is shared across sexes. 

However, using LDscore regression, we reject the null hypothesis of rg=1 for AFB (P=0.007). 

A possible explanation of why we have not found more evidence for sex-genotype 

interactions may attributed to the fact that we analyzed only common variants and that we 

restrict our analysis to autosomal chromosomes. Moreover, our sex-specific meta-analysis 

may be underpowered to discover sex-specific loci.  

 

When we compare Table 1 and 2, we note that in addition to the chr 5 locus for NEB, the chr 
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2 locus for AFB also shows a discrepancy between a sex-specific effect in the GWAS 

(women only) versus the (known) function of a candidate gene (AFF3). It would be 

premature to draw any firm conclusions since little is known about the role of AFF3 (chr 2) 

and EFNA5 (chr 5) in reproduction. For a substantial number of loci there are differences in 

the p-value between men and women, but the effect size suggests the association is present in 

both sexes. Only four loci seem to have a convincing null effect in men (rs1160544, 

rs10056247, rs2721195) or women (rs1316111). We would encourage functional follow-up 

studies on these points to further our understanding of human reproduction. 

 

6. POLYGENIC SCORES PREDICTION 

We performed out-of-sample prediction using cohorts for which we have direct access to 

genotypic data. We calculated polygenic scores for AFB and NEB, based on GWA meta-

analysis results and used regression models to predict the same phenotypes in four 

independent cohorts: HRS, Lifelines, STR and TwinsUK. We ran ordinary least-squares 

(OLS) regression models and report the R2 as a measure of goodness-of-fit of the model. In 

addition, we tested how well our polygenic scores for NEB could predict childlessness at the 

end of the reproductive period (using age 45 for women and 55 for men). Since age at first 

birth is observed only in parous women, we adopt an additional statistical model to account 

for censoring and selection. Finally, we also tested the predictive value of our polygenic 

scores for AFB for age at menarche (using TwinsUK) and age at menopause (using 

Lifelines). 

 

6.1 Linear polygenic scores for AFB and NEB 

We ran meta-analyses of the pooled AFB and NEB phenotypes, excluding each of the 

independent cohorts. Using these summary statistics, we constructed linear polygenic scores 

using the effect sizes from the original meta-analysis.1  We constructed all scores using the 

software PLINK and PRSice2,3 based on best call genotypes imputed to 1000G.  For each 

phenotype, we calculated nine different scores using different p-value thresholds: 5e-08, 5e-

07, 5e-06, 5e-05, 5e-04, 5e-03, 0.05, 0.5 and 1. Results are clumped using the genotypic data 

as a reference panel for LD structure.  
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We first regressed each phenotype on birthyear, its square and cubic to control for nonlinear 

trends in fertility, and the first 10 principal components, following the analysis plan 

distributed to the cohorts. If the cohort included both men and women, we included sex as a 

covariate in the regression models. Next, we regressed the residuals from the previous 

regression on the polygenic score. We performed a set of Ordinary Least Squares (OLS) 

regressions where we calculated R2 as an indicator of goodness-of-fit of the regression model. 

For twin studies (STR and TwinsUK), we included only one MZ twin in the analysis and 

used clustered standard errors at the family level. To obtain 95% confidence intervals (CI) 

around the incremental R2’s, bootstrapping was performed with 1,000 repetitions.  

 

The results of the polygenic score analyses are depicted in Supplementary Figure 2. The 

sample-size-weighted mean predictive power of the AFB score constructed with all SNPs is 

0.9%, while the NEB score predictive power is 0.2%.  

 

6.2 Linear polygenic scores for infertility 

We used the score for NEB in an additional analysis to predict the probability to remain 

childless at the end of the reproductive period. Despite its limited predictive power for 

number of offspring, our analysis shows that an increase of one standard deviation of the 

polygenic score is associated with a decrease of around 9% in the probability to remain 

childless for women, with no significant differences among men (see Supplementary Table 

21). The results are consistent across different cohorts.  

 

6.3 Additional statistical models for censoring and selection 

There are two limitations when studying the genetic determinants of AFB. The first is that 

this measurement is assessed only for men and women who ever became parents and does not 

take into consideration that a proportion of respondents are still at risk of having a child (i.e., 

did not have a child yet by the date of the interview) or will remain childless. This problem is 

commonly referred in the statistical literature as ‘right censoring’, since the outcome is not 

observed for all respondents, despite the fact that part of the respondent are still ‘at risk’ of 
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experiencing childbirth.106 The second problem is statistical selection. Individuals with a 

measurement of AFB may be genetically different from individuals who remain childless. If 

childless individuals are different from the general population, the association results on AFB 

may be biased by selection problems. To investigate these two issues further, we estimated 

additional statistical models.  

 

To control for right-censored data, we estimated semi-parametric Cox regression models4 in 

which we estimate the effect of the polygenic score (PGS) on increasing the hazard of having 

a child conditional at each age. In other words, it is a model that estimates the impact of AFB 

PGS on yearly AFB, which will allow us to assess whether an increase in the AFB PGS is 

associated with a reduced risk of childbearing at each yearly age interval. This class of 

models takes into account censoring and is widely used to study fertility timing.107 Our 

results show that the calculated PGS for AFB based on all SNPs is associated with an 

increased risk of childbearing at any age. The median AFB for men in the pooled sample is 

28 and 26 for women. The hazard ratio of the PGS for AFB is 0.92 for women and 0.97 for 

men. This means that an increase of one standard deviation in the PGS is associated with an 

increase of 8% of AFB for women and 3% for men. Results for different cohorts and sex are 

depicted in Supplementary Table 22. Since this is a survival model that handles right-

censoring (i.e., that the event of AFB did not occur by the observation time), the 

interpretation is that an increase in one standard deviation of the AFB PGS is associated with 

a reduction of 8% and 3% respectively for women and men in the hazard ratio of 

reproduction.  

 

To control for selection, we estimated bivariate Heckman selection models in which we 

estimate the probability to be ‘eligible’ or at risk for AFB in a two-step procedure. Since we 

are interested in possible genetic differences among men and women who ever had children 

with respect to childless individuals, we used the PGS for NEB to model the probability to be 

at risk for AFB.  The results from the Heckman selection models indicate slightly lower 

coefficients than OLS regression models but no substantial differences (see Supplementary 

Table 35 for details). 
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6.4 Linear prediction of age at menarche and age at menopause using AFB linear score 

 

As an additional test, we examined whether the aforementioned PGS scores for AFB and 

NEB can predict related fertility traits such as age at menopause and age at menarche. We 

used the age at menopause measurement included in the Lifelines cohort. Age at menopause 

is measured with the question: “At which age have you had your last menstrual period?” We 

excluded women from the sample who reported to have had their last menstruation before 

age 30 or after age 60. The median age at natural menopause (ANM) in the sample is 45.  

Our results show that the PGS for AFB is associated with a later ANM. Since a substantive 

proportion of the sample of women in Lifelines is still in the pre-menopausal period, we 

estimated a proportional hazard model (Cox regression) in which we estimate ANM as a 

function of PGS for AFB. Our estimates indicate that having higher predisposition for AFB is 

associated with a later ANM. The hazard ratio estimate 0.97 indicates that an increase of one 

standard deviation of the PGS for AFB is associated with a decrease of ANM of about 3%.  

We used TwinsUK to model age at menarche. Our estimates indicate that an increase of one 

standard deviation on the PGS of AFB is associated with an increase of 0.06 years on age at 

menarche.5 Results are depicted in Supplementary Table 23. 

 

6.5 Association of menopause variants with AFB 

We also examined whether menopause variants are associated with AFB. We calculated a 

PGS of age at menopause based on the recent GWAS results from Day et al. (2015)108 and 

applied them to LifeLines and TwinsUK. The results for this analysis can be found in 

Supplementary Table 36 and shows no predictive power of the menopause genotype on AFB. 

This is consistent with the lookup exercise presented in S7.2, where none of our loci were 

significantly associated with age at Menopause. There might be several reasons why the LD 

score regression indicates a positive genetic correlation but we do not find evidence for 

specific loci. First, one or both of the studies may be underpowered and thus unable to 

identify a sufficiently large number of variants. Second, the correlation between the two traits 

may be spurious and mediated by other traits (e.g., age at menarche). We agree that it would 

be very interesting to pursue this in further research.   
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6.6 Discussion: The predictive power of polygenic scores 

We acknowledge that the predictive power of the polygenic scores created from a meta-

analysis of over 60 GWASs is only a fraction of what has been found in previous twin and 

family1 and even GREML studies.38 Several reasons have been noted for this ‘missing 

heritability’ problem,109 including non-additive genetic effects,49 epistatic effects,110 rare 

variants and inflated estimates from twin studies due to differential sharing of environmental 

factors in monozygotic and dizygotic twin pairs.111 Other factors that can explain the lower 

magnitude of effects are also plausible. Firstly, as we elaborate in Section S1.5, human 

reproductive behavior is not only biological, but also strongly related to environmental 

factors, and we should therefore not expect to find large independent genetic effects. We do 

not expect the PGS score to explain part of the variance attributable to environmental factors 

(i.e., the C and E in twin studies), but rather argue that these environmental factors are likely 

much stronger than genetic factors for these behavioral outcomes. As argued recently 

elsewhere,39 it is vital to note that deep genetic analyses need to be united with strong and 

direct phenotypic measures. Although AFB and NEB are robustly measured, they inherently 

include a mix of voluntary (choice) and involuntary (infertility) measures. To overcome this 

problem, future innovations must unite rich genetic data with equally rich and precise 

phenotypic data collected precisely and continuously over several generations.  

 

A second factor is that when studying phenotypes with behavioral component, GWAS 

discoveries are potentially limited by heterogeneity across birth cohorts and populations (e.g., 

countries) and particularly prone to gene-environment interaction. Fertility behavior has been 

demonstrated to be strongly environmentally determined and modified (e.g., by the 

introduction of effective contraception).18 Although we examine gene-environment 

interaction across birth cohorts in Sweden in the Supplementary Note (section 10.1), in future 

research we will explore whether gene-environment interaction plays a role across birth 

cohorts and countries, with preliminary evidence suggesting that this is the case.112 This is in 

line with recent research that has shown cohort differences in the genetic influence on 

smoking over time.113 
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7 GENETIC CORRELATIONS 

 

7.1 Estimating genetic overlap using LD score regression 

The estimates of the LD score regression reported in the main text was based on the LD-score 

regression method, which was developed by Bulik-Sullivan et al. (2015).90 Here we describe 

in more detail how these estimates were computed and the genetic correlation we estimated 

between AFB and NEB and 27 publicly-available GWAS results (Supplementary Table 25 

and graphed in Figure 3 in the main text). We focus on infertility traits, developmental traits, 

anthropometric traits, neuropsychiatric conditions and selected behavioral traits. LD score 

regression works even in the presence of sample overlap and only requires summary statistics 

and a reference panel from which to estimate SNP’s “LD score”, which measures the amount 

of genetic variation tagged by a SNP.  

 

The approach requires GWAS summary statistics for all SNPs in our GWAS and a reference 

sample from which the LD can be estimated in order to estimate the LD score regression.86 

The method is written formally based on the following relationship:  

 

𝐸 𝑧\c𝑧%c =
𝑁\𝑁%
M ℓc𝜌2 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡, 

 

Where 𝑧lc is the z-score of SNP j from the GWAS of trait k (k=1,….,20), 𝑁l is the sample 

size of the GWAS of trait k, ℓcis the LD Score of SNP j, M the number of SNPs included in 

the GWAS, 𝜌2 the genetic covariance between traits 1 and 2, with the regression intercept 

represented by intercept. The slope from the regression of 𝑧\c𝑧%c  on 𝑁1𝑁2ℓ𝑗 can be used to 

estimate the genetic covariance between the two traits. We are also able to estimate the 

heritabilities of the two traits, ℎ2\%  and ℎ2%%  from the univariate LD score regressions of traits 1 and 

2. It therefore follows that an estimate of the genetic correlation is:  

𝑟2 =
𝜌2

ℎ2\% ℎ2%%
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We use the file of LD scores computed by Finucane et al.91 using genotypic data from a 

European-ancestry population (eur_w_ld_chr). LD Scores are computed with genotypes from 

the European-ancestry samples in the 1000 Genomes Project using only HapMap3 SNPs. We 

additionally follow the common convention of restricting our analyses to SNPs with MAF > 

0.01, thus ensuring that all analyses are performed using a set of SNPs that are imputed with 

reasonable accuracy across all cohorts that contributed towards meta-analyses. 

 

The standard errors (SEs) produced by the LDSC python software package uses a block 

jackknife over the SNPs. This influences the interpretation. Conventional standard errors are 

interpreted as measuring the variability of the estimate holding the covariates constant, but 

drawing on a new set of individuals. In this technique, SEs are interpreted as the variability of 

the estimate holding the sample constant, but drawing a new set of SNPs.  

 

7.2 Estimating the genetic correlation between AFB and NEB 

The negative relationship of late AFB with lower NEB7,10,114 is well-established and 

consistent in advanced societies. Behavioral genetic models, based on twin or family studies 

show that this correlation is partially genetic, suggesting that natural selection favored a 

younger age at first birth over the Twentieth century.1,38,115  

 

A recent study on genetic basis of fertility traits using molecular genetic data shows that 

common genetic variants influence NEB and AFB in a large sample of unrelated women.38 

Their results indicate a significant negative genetic correlation (rg=–0.62, SE=0.27) between 

AFB and NEB. This finding implies that individuals with genetic predispositions for an 

earlier AFB had a reproductive advantage. We replicated the analysis of Tropf et al.38 on a 

large sample of women from the Women General Health Study (WGHS, sample size 

N=40,120). We found a negative genetic correlation (rg=–0.26, SE=0.13) between AFB and 

NEB. The results were limited to women and applied to a limited sample. We extend this 

work using LD score bivariate regression86,90 on AFB and NEB on both men and women to 

identify the extent of cross-trait genetic correlation. 
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The LD score bivariate estimates indicate high negative correlation rg=–0.66 (SE=0.03, p-

value=1.03x10-102) between AFB and NEB. This result is consistent both in men and women 

and is in line with the phenotypic correlation. Genetic correlation of fertility traits among 

women is slightly higher (rg=–0.66, SE=0.04) than men (rg=–0.58, SE=0.07). Overall these 

results show a considerable genetic overlap between NEB and AFB (as found in section 3). 

However, since the genetic overlap is statistically different from 1 for both men and women, 

these results indicate the existence of trait-specific genetic components.  

 

7.3 Results: phenotypic correlations with human reproductive behavior 

As discussed in the main text, we used information from 27 publicly available GWAS results 

to examine phenotypic correlations between AFB and NEB (Supplementary Table 25 and 

Figure 3 in the main text).  These included: nine developmental  traits, some of which are 

directly related to the reproductive span (age at menarche,116 age at menopause,117 Tanner 

stage,118 age at voice breaking for males,119 polycystic ovary syndrome (PCOS),120 age at first 

sexual intercourse,23 DZ Twinning,121 birth length,122 birth weight123), four behavioral traits 

(years of education,76,79 cigarettes per day,124 ever smoked,124 age onset smoking124), seven 

personality and neuropsychiatric traits (neuroticism,125 openness, schizophrenia,126 bipolar 

disorder,127 subjective well-being,80 Alzheimer’s disease,128 autism129), four cardiometabolic 

traits (LDL cholesterol,130 triglycerides,130 type 2 diabetes,131 fasting insulin levels132), and 

three anthropometric traits (BMI,133 height,87 waist-hip ratio134). 

 

As shown in Fig. 3 and Supplementary Table 25  (P-values in bold indicate Bonferroni 

correction (P-value<0.05/27=1.85x10-03)), AFB is positively correlated with years of 

education, age at menarche, age at menopause, age at voice breaking, age at first sexual 

intercourse and adult height, while it is negatively correlated with PCOS, adult BMI and 

waist-hip ratio, triglycerides, diabetes and fasting insulin level. Once multiple testing is 

controlled for, years of education and age at first sexual intercourse are the only traits 

significantly correlated with NEB (P-value<2.25x10-03), and the direction is negative for both 

traits.  
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7.4 Discussion 

7.4.1 Human development 

AFB was shown to be positively correlated with the development measures of age at 

menarche, age at menopause, age at voice breaking and age at first sexual intercourse. A later 

age of menarche (AOM) has been associated with subfecundity and infertility in adulthood. 

A recent large cohort study of 73,107 women135 demonstrated that women who reached 

menarche later than 15 years (compared to a reference group of girls with an AOM at 13 

years) had a higher risk of infertility. Women younger than 11 years at AOM had lower odds 

of subfecundity and all results remained significant also after adjusting for women’s age of 

pregnancy. Some studies, however, have also found a significant relationship between early 

AOM with diminished functional ovarian reserve later in life among infertile women.136 

There is also evidence of a small increased risk of endometriosis associated with early 

AOM.137 

 

Stolk et al. (2012)138 linked age at menopause to genes implicated in DNA repair and 

immune function. A recent study reported genetic correlations indicating shared aetiologies 

in both sexes between the timing of puberty and BMI, lipid levels, type 2 diabetes and 

cardiovascular disease.139 Fertility timing has been positively associated with age at 

menarche and age at first intercourse. Although previous research has largely focused on 

identifying genes related to menopause and menarche that mark the end the beginning and 

end of the reproductive career, it is also possible that observed fertility (AFB, NEB) 

influences the subsequent age at menopause and ovarian aging. Exploring these overlaps and 

associations would be an interesting area for future research.  

 

Results from a genetic study of age at first sexual intercourse (AFS) linked AFS to variation 

in pubertal timing, but also personality characteristics related to high risk-taking and low 

neuroticism.23 We examine the link with AFS and neuropsychiatric disorders in a later 

section (Section 7.4.5).   

 

7.4.2 Cardiometabolic traits 
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Having more AFB-increasing alleles was also significantly associated with a lower genetic 

scores for triglycerides, Type 2 Diabetes and fasting insulin level. Pregnancy for women 

results in considerable alterations in the cardiovascular system.36 Reproductive events are 

associated with alterations in blood lipids and blood pressure and may therefore influence 

determinants of coronary heart disease. As with diabetes, there are mixed findings regarding 

the link between age at birth, parity and coronary heart disease (CHD). Some studies have 

linked the number of children and CHD risk with the prevalence lowest among those with 2 

children with a linear increase with each additional child.22 These researchers have argued 

that it is not the pregnancy per se that has a biological impact but rather that the lifestyle risk 

factors associated with childrearing leads to obesity which in turn results in increased CHD in 

both sexes. Yet, they maintain the argument that biological responses of pregnancy may have 

additional adverse effects in women.  

 

Other studies attempted to elucidate the mechanisms linking multiparity to cardiovascular 

disease demonstrating that repeated pregnancies induce long-term changes in cardiovascular 

regulation in women due to the changes in vascular compliance and endothelium-dependent 

vasoconstriction, which in turn increase the risk for CHD in multiparous women.36 A recent 

study related early puberty timing to higher risks for both Type 2 Diabetes and cardiovascular 

disease.27 It may be however, that just as with the studies on GDM (gestational diabetes 

mellitus) described shortly, retrospective and cross-sectional approaches may have 

limitations related to selectivity and unobserved confounding factors. A prospective study in 

the US found that a younger age at menarche was only weakly associated with CHD and that 

nulliparous women only had a slightly higher rate of CHD compared to parous women. They 

also found no change in the risk with an increasing number of births or any association with 

the age at first birth concluding that there is no clear link between reproductive history and 

risk of CHD.140 Further research is required to establish whether there is a true causal link 

and underlying genetic and biological mechanisms to explain the association between 

reproductive history and cardiometabolic traits.  

 

There does, however, appear to be a link with the cardiometabolic traits that we measure in 

this study with infertility. Total cholesterol, triglycerides, LDL cholesterol levels and fasting 

insulin levels have been shown to be statistically higher in groups with endometriosis 
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compared to controls.141 Endometriosis is estimated to occur in 5-10% of premenopausal 

women with ~50% experiencing problems conceiving.34 A recent study also revealed a link 

between endometriosis and obesity-related traits.142 Other studies have also linked the impact 

of maternal cholesterol metabolism to ovarian follicle development and fertility.143 The role 

of the low-density lipoprotein receptor in cellular metabolism in inhibiting human 

reproduction has likewise been established.144 Others have linked metabolic syndrome, which 

is a compilation of symptoms such as a high BMI (obesity), type 2 diabetes, dyslipidemia, 

and hypertension with an increased prevalence of infertility in men.145  

 

A wide body of research links reproductive history to Type 2 Diabetes. Early studies found 

that nulliparity and multiparity or grand parity (5 or more children) was associated with 

higher levels of fasting glucose and insulin levels among nondiabetic women.146–148 

Multiparity has been associated with higher risks of cardiovascular disease in both women 

and men27,149,150 and higher insulin resistance and type 2 diabetes.149,151 Other research found 

that high parity was associated with insulin resistance and type 2 diabetes, which even after 

adjusting for confounders (socioeconomic, higher obesity, inflammatory markers) grand 

parity is associated with a 27% increased risk for diabetes (95% CI, 1.02-1.57).151 

 

It is essential to note, however, that early cross-sectional and retrospective studies did not 

control for age, body size or socioeconomic status. Later cross-sectional studies that 

controlled for the abovementioned factors, continue to produce highly mixed results (for a 

review see ref 152). A key limitation is that many of the previous studies lack universal GDM 

(gestational diabetes mellitus) screening and did therefore not measure preconception 

glycaemia or glucose intolerance during pregnancy. A systematic review and meta-analysis 

demonstrated that women who had gestational diabetes had a seven-fold greater risk of 

developing Type 2 Diabetes.152 This suggests that once GDM status is accounted for, the 

direct parity effect will be very small or null. One the other hand, unobserved conditions such 

as PCOS, obesity or insulin resistance could in fact cause infertility (nulliparity) which would 

in turn lead to an underestimation of the association.  

 

Gunderson et al. (2007)153 examined whether childbearing increased the incidence of Type 2 

Diabetes after preconception glycaemia and gestational glucose intolerance were controlled 
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for. They concluded that childbearing did not elevate the incidence of diabetes among those 

without GDM (i.e., normal glucose tolerance during pregnancy). It was GDM rather that was 

associated with the highest risk of developing diabetes, which remained even after controlling 

for family history of diabetes, preconception glycaemia and obesity. Another study using 

GDM screening found that a woman’s age remained a strong predictor even after adjusting 

for prior GDM history, mirroring the general historical increase in GDM (and related levels 

of obesity) across time in certain groups. A logistic regression analysis also showed that 

mother’s age at birth (OR 95% CI per 5 years 1.6–1.8) was significantly associated with 

GDM. Parity was not significantly associated with GDM and had no effect on the GDM 

increase over time.154  

 

7.4.3 Anthropometric traits 

A considerable body of literature links anthropometric traits (such adult height, BMI and 

increasingly waist-hip ratio) with fertility timing and success.133,155 Anthropological research 

argue that shorter women may have more reproductive success because of the trade-off 

between investing in energy in growth or reproduction.156 Moreover, taller women appear to 

become fertile at a later age (e.g., age at menarche) than shorter women, and women who 

have children at an early age reach a shorter adult height, which may result in a negative 

relationship between women’s height and reproductive success.155,157 The relationship 

between men’s height and fertility is more complex. One paper revealed a curvilinear 

association between men’s height and number of children in a nationally representative 

sample of US respondents.158 Men of average height appear to have a higher reproductive 

success than either short or tall men. The relationship between height and number of children 

in advanced societies is not always negative. A recent paper showed that in the Netherlands – 

the country with the highest average population height – the relationship is the opposite.155 A 

possible mechanism through which height may affect fertility is sexual selection and 

assortative mating. There is a certain degree of homogamy in anthropometric traits among 

spouses, even after controlling for a variety of socio-economic traits.159,160  
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BMI and waist-hip ratio (WHR) is another area of research often linked with fertility success, 

particularly in couples seeking ART treatment.161 Both a very low and a very high BMI have 

been found to delay both the timing and number of children in both men and women.162  

Waist-hip ratio measures body fat distribution and serves as a more accurate predictor of 

metabolic consequences independent of overall adiposity. A study locating new loci for 

WHR also found that seven of the loci exhibited marked sexual dimorphism, or in other 

words, that the genetic loci that modulate fat distribution have a stronger effect on WHR for 

women than men, suggesting strong gene-by-sex interactions.163  

 

7.4.4 AFB and educational attainment 

As described already in detail in Supplementary Note Section 1.5, the strong relationship 

between AFB and years of education is not surprising, since educational attainment is 

associated with higher AFB and a lower NEB in most advanced societies.54,164 As discussed 

previously, the study of the relationship between higher educational attainment and 

reproduction has been a central focus within demography and related social 

sciences.7,10,58,114,165 The majority of the research demonstrates that achieving higher 

education (particularly of women) operates to postpone AFB. Other studies have shown that 

fertility postponement may be related to higher cognitive ability,166 but additional research is 

required to separate cognitive scores from social environment (e.g., family environment, 

social class). Others have found that after controlling for age, physical maturity and mother’s 

education, there is a significant curvilinear relationship with intelligence and early sexual 

intercourse with both very low and very high intelligence operating as a protective factor 

against early sexual activity.167  Further careful research in this area would be necessary to 

understand the relationship.  

 

7.4.5 AFB, personality and neuropsychiatric disorders 

The results of the LD score regression did not find any significant association with 

neuroticism, openness, schizophrenia, bipolar disorder, well-being, Alzheimer’s disease or 

autism, so we will only touch upon this topic briefly. Personality has been demonstrated to be 

predictive of fertility intentions20,168 and the timing of childbearing.169,170 The finding that 

AFB is negatively correlated with neuroticism has also been found in previous non-genetic 
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studies linking AFB to personality traits.171,172 A bidirectional effect between fertility and 

psychological development has likewise been documented.168,173 This may suggest that the 

interaction between genetic and environment factors could be interpreted as genetic 

influences on fertility that have an effects on both fertility behavior and psychological 

outcomes. Since personality, educational attainment and cognitive ability are largely formed 

before individuals enter into their childbearing years, it is plausible that personality and 

cognitive traits are likely causal and precede fertility variables.174 A recent study also 

demonstrated a genetic overlap between schizophrenia and AFB, showing a U-shaped 

relationship. The study confirmed that the schizophrenia risk profile score significantly 

predicted the relationship between maternal age and risk of schizophrenia in offspring.16  

 

7.4.6 Smoking behavior 

The strong negative correlation of a lower genetic risk of smoking (less cigarettes per day, 

lower chance to have ever smoked and later age of onset smoking) with a later AFB could 

operate via two mechanisms. First, it is well established that cigarette smoking has a 

detrimental biological effect on ovarian function and spermatozoa. There is an established 

link of a longer time to conception and decreased fertility with the increasing number of 

cigarettes smoked per day.175 Other studies have linked cigarette smoking to infertility such 

as problems with preimplantation176, shrinking the size and quality of oocytes177, and 

abnormal spermatozoa by decreasing sperm motility in smokers.178 A second potential 

mechanism is that the earlier onset of smoking and higher number of cigarettes smoked per 

day is also highly stratified by socioeconomic status. Smoking and low socioeconomic status 

are often linked to other environmental risk factors and a higher co-morbidity for other 

diseases.179 Smoking is thus often a marker for structural, health and material disadvantage in 

addition to being concentrated in groups with the lowest levels of education.180 

 

7.4.7 Limitations of LD score regression genetic correlations 

Although LD score regression is a powerful tool to identify possible relationships between 

traits, we acknowledge that it does not allow us to establish causal directions or relationships 

or to adjust for potential mediating factors. The relationship between many of the traits 

discussed in this section is highly complex with potential bi-directional mechanisms. Further 
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studies are required to explore these relationships and establish whether the genetic risk 

related to AFB and NEB are either partially or fully mediated by other factors.  

 

URLs. 

 

The LDSC software is available at the website: http://www.github.com/bulik/ldsc;  

GWAS summary statistics are available at the following websites: PGC (psychiatric) 

summary statistics, http://www.med.unc.edu/pgc/downloads; GIANT (anthropometric) 

summary statistics, http://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files; 

data on birth length, birth weight, Tanner stages have been contributed by EGG Consortium 

and has been downloaded from www.egg-consortium.org.; data on glycaemic traits have 

been contributed by MAGIC investigators and have been downloaded from 

www.magicinvestigators.org; DIAGRAM (type 2 diabetes) summary statistics, 

http://www.diagram-consortium.org/; SSGAC (educational attainment) summary statistics, 

http://www.thessgac.org/.
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8. LOOK-UP OF LEAD SNPS IN AFB GWAS FOR AGE AT MENOPAUSE AND 

AGE AT MENARCHE 

 

Following the results on genetic overlap with other phenotypes we tested – in a quasi-

phenotype replication setting – whether the SNPs strongly associated with AFB in women are 

empirically plausible candidates SNPs for age at menarche and age at menopause. Our results 

reported in the previous section (Supplementary Note, Section 7) indicate a strong genetic 

correlation between these traits, suggesting a common genetic basis of reproductive behavior 

and reproductive life span.  

 

Here we use a two-stage approach that has been applied in other contexts.80,181 Since we are 

only looking at phenotypes measured among women with menarche and menopause, we 

started our analysis from the meta-analysis results from the AFB sample of women. In the 

first stage, we conduct a meta-analysis of age AFB excluding the cohorts that were part of the 

meta-analysis of the phenotype we intend to replicate. This step reduces the risk of overlap 

between the AFB sample from which the candidate SNPs are drawn and the sample used for 

testing the other phenotypes. We merged these SNPs with the publically available association 

results on the most recent GWAS on age at menarche116 and age at menopause117 from the 

Reprogen consortium websiteb. We first merged the two association files and dropped SNPs 

that are not present in both the files. We aligned the alleles and the effects direction using the 

software package EasyStrata.182 We then selected the independent SNPs with a p-

value<1x10-5, using the clump procedure in PLINK83, using the same settings described in 

section SI.2 (1000Kb window and LD threshold of R2>0.1) to identify the most significant 

SNPs in associated regions included in both files. We define “prioritized SNP associations” 

as those that passed the Bonferroni correction for the number of SNPs tested 

(P=0.05/122=4.10x10-4, both in age at menarche and age at menopause).  

 

Supplementary Figure 36 shows the QQplots of the leading SNPs for AFB on age at 

Menarche (panel a) and age at menopause (panel b). Our results identified three SNPs after 

                                                
b Data downloaded in November 2015 from http://www.reprogen.org/data_download.html 
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Bonferroni-correction that can be used as good candidates for age at menarche. We do not 

isolate any clear “candidate SNP” for age at menopause. The three SNPs that we identified 

(rs9589; rs6803222; rs9858889) are all in Chromosome 3. Two of them (rs9589; rs6803222) 

lie in proximity (<500Kb) of rs2777888, which has been identified as the strongest signal in 

our AFB GWAS.  



 

47 

 

9. BIOLOGICAL ANNOTATION 

9.1. Identifying potentially causal variants 

We followed the post-GWAS pipeline reported by Vaez et al183 to shed light on the genomic 

context of the 12 independent genome-wide significant SNPs (Table 1 of the main text).  

In silico sequencing: For in silico sequencing, we used the data of the 1000 Genomes Project 

phase3 release of variant calls. This data set is based on the 20130502 sequence freeze and 

alignments. We used version v5a (Feb. 20th, 2015), and included only the 503 subjects of 

European ancestry (accessed April 5, 2016)184. The Variant Call Format (VCF)185 files for 

regions of 1 Mb at either side of each lead SNP were downloaded using the Tabix software 

package.186 Then, the r2 between the lead SNPs and all other bi-allelic SNPs within the 

corresponding 2 Mb area was calculated as a metric of linkage disequilibrium (LD) using the 

Plink software package (v1.07).83 All SNPs in LD with any of the lead SNPs were then 

annotated by ANNOVAR software187 (version 1 Feb 2016, accessed April 9, 2016). We also 

used Sorting Intolerant From Tolerant (SIFT)188 and Polymorphism Phenotyping 

(PolyPhen)189 prediction scores to characterize the damaging impact of the nonsynonymous 

SNPs on the corresponding proteins. These scores were obtained from Ensembl release 83 

(accessed April 11, 2016).190 

 

In silico pleiotropy analysis 

 To identify any other trait or outcome associated with these 12 independent loci, we used the 

publicly available data of the National Human Genome Research Institute (NHGRI) GWAS 

Catalog (Catalog of Published Genome-Wide Association Studies).191 We checked for 

pleiotropic effects of all lead SNPs as well as their linked variants (revealed in the previous 

phase of in silico sequencing) on other complex traits or diseases identified in previous 

GWAS studies and listed in the GWAS Catalog using ANNOVAR software187 (version 1 Feb 

2016, accessed April 9, 2016).  
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9.2. Gene-based GWAS analysis 

We performed gene-based testing with the full GWAS set (~2.5M HapMap-imputed SNPs) 

of both phenotypes using VEGAS.192,193 This software has the advantage of accounting for 

LD structure and the possibility to define a range beyond the gene bounds to include 

intergenic regions in the analysis. We defined a 50kb extra window surrounding the genes 

and considered every SNP for the gene-based analysis, ran the analyses per chromosome with 

up to 106 permutations and considered P<2.5x10-06 as the threshold for significance 

(0.05/~20.000 genes).  

9.3. eQTL and mQTL analyses 

eQTL194 and mQTL195 analyses performed by the BIOS consortium have been described 

previously. The methods described in these papers are summarized below. 

Genotype data 

The BIOS consortium used samples from five Dutch cohorts; genotype QC and generation 

was described previously for each cohort: The Leiden Longevity Study,196 The Rotterdam 

Study,197 The LifeLines-DEEP cohort,198 The Cohort on Diabetes and Atherosclerosis 

Maastricht (CODAM)199 and The Netherlands Twin Register.200 Genotype data were 

harmonized towards the Genome of the Netherlands (Genome of the Netherlands 

Consortium, 2014) (GoNL) using Genotype Hamonizer and subsequently imputed per cohort 

using Impute2 using the GoNL reference panel (v5). We removed SNPs with an imputation 

info-score below 0.5, a HWE P-value smaller than 10-4, a call rate below 95% or a minor 

allele frequency smaller than 0.05.   

9.3.2 RNA data preparation, sequencing and quantification 

Total RNA from whole blood was deprived of globin using Ambions GLOBINclear kit and 

subsequently processed for sequencing using Illumina’s Truseq version 2 library preparation 

kit. Paired-end sequencing of 2x50bp was performed using Illumina’s Hiseq2000, pooling 

samples at 10 per lane, and aiming for >15M read pairs per sample. Finally, read sets per 

sample were generated using CASAVA, retaining only reads passing Illumina’s Chastity 

Filter for further processing. The quality of the raw reads was checked using FastQC. The 

adaptors identified by FastQC (v0.10.1) were clipped using cutadapt (v1.1) applying default 

settings (min overlap 3, min length). Sickle (v1.200) was used to trim low quality ends of the 
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reads (min length 25, min quality 20). Read alignment was performed using STAR 2.3.0e. To 

avoid reference mapping bias all GoNL SNPs with MAF > 0.01 in the reference genome 

were masked. Read pairs with at most 8 mismatches, mapping to at most 5 positions were 

used. Mapping statistics from the BAM files were acquired through Samtools flagstat 

(v0.1.19-44428cd). The 5’ and 3’ coverage bias, duplication rate and insert sizes were 

assessed using Picard tools (v1.86). We estimated expression on the gene, exon, exon ratio 

and polyA ratio levels using Ensembl v.71 annotation (which corresponds to Gencode v.16). 

Overlapping exons (on either of the two strands) were merged into meta-exons and 

expression was quantified for the whole meta-exon. To this end, custom scripts were 

developed which uses coverage per base  from coverageBed and intersectBed from the 

Bedtools suite (v2.17.0) and R (v2.15.1). This resulted in base counts per exon or meta-exon. 

Expression data was first normalized using Trimmed Mean of M-values (TMM). Then 

expression values were log2 transformed, probe and sample means were centered to zero. To 

correct for batch effects, principal component analysis (PCA) was run on the sample 

correlation matrix and the first 25 PCs were removed. We saw that removing these PCs 

resulted in highest number of eQTLs detected. To ascertain that none of these 25 PCs are 

under genetic control, we ran separate QTL mapping on each principal component and 

ensured that there were no SNPs associated with them. After QC194 data was available from 

2,116 samples. 

9.3.3 Methylation data generation, mapping and normalization. 

For the generation of genome-wide DNA methylation data, 500 ng of genomic DNA was 

bisulfite modified using the EZ DNA Methylation kit (Zymo Research, Irvine, California, 

USA) and hybridized on Illumina 450k arrays according to the manufacturer’s protocols. The 

original IDAT files were extracted from the HiScanSQ scanner. We remapped the 450K 

probes to the human genome reference (HG19) to correct for inaccurate mappings of probes 

and identify probes that mapped to multiple locations on the genome. Next, we removed 

probes with a known SNP (GoNL, MAF > 0.01) at the single base extension (SBE) site or 

CpG site. Lastly, we removed all probes on the sex chromosomes, leaving 405.709 high 

quality methylation probes for the analyses. Methylation data was directly processed from 

IDAT files resulting from the Illumina 450k array analysis. After QC,195, data was available 

from 3,841 samples. 
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9.3.4 eQTL and mQTL analysis 

For each of the 12 SNPs identified in the GWAS, local (cis, exons/methylation sites < 1 MB 

from the SNP) and genome-wide (trans, exons/methylation sites > 5 MB from the SNP) 

effects were identified by computing Spearman rank correlations between SNPs and local or 

global exons/methylation sites. Bonferroni multiple testing correction was performed for the 

12 SNPs tested (P<2.5x10-06 for cis mQTL analysis, P<1x10-08 for trans mQTL analysis, 

P<1.2 x10-06 for cis eQTL analysis, P<1.3x10-08 for trans eQTL analysis). For each of the 

significant associations, the exons/methylation sites were selected, the strongest eQTLs were 

identified for these exons/methylation sites, and LD between these strongest eQTLs and the 

corresponding SNP identified in the GWAS were computed. LD was computed using BIOS 

genotypes (the genotypes used for eQTL and mQTL mapping).  

9.4. Functional variant analysis using RegulomeDB 

We used RegulomeDB201 to identify variants amongst the 322 SNPs that reached P<5x10-08 

for association with AFB and/or NEB in the meta-analysis of GWAS that likely influence 

regulation of gene expression. RegulomeDB integrates results from RoadMap 

Epigenomics202 and the ENCODE project.203 SNPs that showed most evidence of being 

functional – defined as a RegulomeDB score <4 – were subsequently examined in more 

detail in terms of effects on gene expression (eQTLs) and their protein-binding capacity 

(Supplementary Supplementary Table 6). 

 

9.4.1 Gene prioritization using four bioinformatics approaches  

Potentially causal genes for the associations identified by GWAS were identified using four 

previously described bioinformatics tools: ToppGene,204 Endeavour,205 MetaRanker,206 and 

DEPICT.207 To this end, we first retrieved positional coordinates for all lead SNPs according 

to GRCh37/hg19 using Ensembl’s BioMart. These coordinates were used to subsequently 

extract all genes located within ±40kb of lead SNPs using the UCSC Supplementary 

Notebrowser. The identified genes then served as input for ToppGene and Endeavour. Genes 

with established roles in fertility served as training genes in this procedure, i.e. BRCA1, 

EGFR, ERBB2-4, HSD17B1, RBM5, ESR1, ESR2 and FSHB. All 10 genes were used in the 
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pooled and sex-specific analyses, while ESR1, ESR2 and FSHB were not used in the analyses 

in data from men only, for biological reasons. For MetaRanker we provided SNPs that 

reached P<5x10-04 and their chromosomal position as input, together with the previously 

mentioned set of training genes. Since ToppGene, Endeavour and MetaRanker are biased 

towards larger and well-described genes, we additionally performed a gene prioritization 

procedure using DEPICT.207 All SNPs that reached P<5x10-04 in the meta-analysis served as 

input, and information on prioritized genes, gene set enrichment, and tissue/cell type 

enrichment were extracted. Genes were subsequently prioritized that reached: 1) P<0.05 in 

DEPICT; or 2) P<0.05 in ToppGene, Endeavour and MetaRanker (Supplementary Tables 11, 

12). 

 

9.5. Functional network and enrichment analyses 

DEPICT was additionally used to identify gene set, cell type and tissue enrichment analyses, 

using the GWAS-identified SNPs with P<5x10-04 as input. c  Due to the relatively small 

number of identified loci, DEPICT was only able to perform these analyses for AFB and 

NEB pooled, and AFB women. 

 

To construct a functional association network, we combined five prioritized candidate gene 

sets into a single query gene set: closest genes to the lead SNPs, closest genes to the 

nonsynonymous SNPs in high LD (r2>0.50) with the corresponding lead SNP, closest genes 

to other types of SNPs in very high LD (r2>0.80) with the corresponding lead SNP, and 

expression probe gene names of cis, and trans eQTLs. The single query gene set was then 

used as input for the functional network analysis.183 We applied the GeneMANIA algorithm 

together with its large set of accompanying functional association data.208 We used the 

Cytoscape software platform,209 extended by the GeneMANIA plugin (Data Version: 

                                                
c We initially used a threshold of P<1E-5 for association with the respective outcomes in the meta-

analyses of GWAS for SNPs to serve as input for the gene and tissue set enrichment analyses, as per 

the developers’ recommendations.206 We contacted the 1st author when this did not yield gene and 

tissue sets that were significantly enriched, and were advised to apply the slightly more lenient 

inclusion criterion of P<5E-4.  
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8/12/2014, accessed April 24, 2016).210 All the genes in the composite network, either from 

the query or the resulting gene sets, were then used for functional enrichment analysis against 

Gene Ontology terms (GO terms)211 to identify the most relevant GO terms using the same 

plugin.210  

 

10. GENE-ENVIRONMENT INTERACTIONS 

Previous research based on twin studies shows differential heritability of fertility behavior 

across birth cohorts.212,213 With the exception of one recent mega-analysis112 and a recent 

related study,214 we are not aware of any study that examines variation at the molecular level 

to understand whether the genetic effect of AFB and NEB changes across birth cohort, level 

of education or other environmental factors. There is an implicit assumption that the genes 

associated with phenotypes are often constant across different historical, geographic or socio-

economic groups.39 In this section, we therefore examine gene-environment interaction by 

birth cohort and educational attainment.  

 

As elaborated upon already in detail in Section 1.5, there has been considerable 

environmental variation over time and among cohorts in different historical periods that has 

undoubtedly influenced AFB and NEB. It is plausible, therefore, that there are differences 

across birth cohorts (time) since individuals born in different periods face diverse 

environmental conditions, such as the introduction and availability of effective contraception, 

sexual norms and diversity in factors that ‘compete’ with fertility, such as the expansion of 

educational attainment and labor force participation of women.7  

 

This builds upon research that has examined changes across cohorts on the genetics of 

smoking. An early study adopted a twin design to demonstrate that genetic factors underlying 

smoking desistance were more important after the introduction of a restrictive legislation on 

smoking.215 A related study also showed strong genetic influences on smoking of cohorts 

born in the 1920s, 1930s and 1950s, but not for those born in the 1940s and 1960s. They link 

these differences to changes in legislation prohibiting smoking in public places.216 Using 

GREML methods and a modified DeFries-Fulker approach, a recent study likewise 
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demonstrated that there were cohort differences in the genetic influence on smoking, which 

increased over time.113  

 

It may also be the case that the PGS for AFB and NEB is moderated by educational 

attainment. If the genetic association operates differently by the level of educational 

attainment, it would provide additional insight into understanding how fertility preferences 

and education are transmitted across generations. A recent study using the HRS in the US 

suggested that natural selection has taken place in contemporary societies and that there has 

been slow selection of lower educational attainment for both sexes.214 In other words, the 

study argues that individuals endowed with genes predisposing them to more years of 

education are having fewer children and that natural selection (of those born from the 1930s 

to 1953) favors variants associated with less education. A commentary on this article39 

emphasizes four main reasons to be tentative about the conclusions that can be drawn. First, 

selection on education is weak and evolutionary changes are slow. Second, the PGS for 

educational attainment is likely associated with many other (non)cognitive traits. Third, 

socio-environmental, cultural and economic factors often override genetic factors for this 

phenotype. Fourth, ‘years of education’ is not a precise measurement and finally, that there 

may be mortality selection in the HRS sample of genotyped individuals, who have a higher 

socioeconomic status.217 

 

10.1 Cohort analysis 

We used the Swedish Twin Register (STR) to examine if the effect of a polygenic score 

(PGS) of AFB and NEB varies across birth cohort. We followed the analysis presented in the 

recent GWAS of education218 and divide the sample into six groups based on their year of 

birth. Each group spans five birth years, with the oldest ranging from 1929-1933 and the 

youngest born between 1954- 1958. We then estimated the following regressions:  

𝐴𝐹𝐵Y = 𝛽/ + 𝛽\𝑃𝐺𝑆wxyY + 𝛽%𝑆𝑒𝑥Y + 𝛾\5𝑐𝑜ℎ𝑜𝑟𝑡5Y

0

5}\

+ 𝛾%5𝑃𝐺𝑆wxyY

0

5}\

×𝑐𝑜ℎ𝑜𝑟𝑡5Y + 𝛽l
I5𝑃𝐶lY

\/

l}\

+ 𝜀Y 
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𝑁𝐸𝐵Y = 𝛽/ + 𝛽\𝑃𝐺𝑆#�yY + 𝛽%𝑆𝑒𝑥Y + 𝛾\5𝑐𝑜ℎ𝑜𝑟𝑡5Y

0

5}\

+ 𝛾%5𝑃𝐺𝑆#�yY

0

5}\

×𝑐𝑜ℎ𝑜𝑟𝑡5Y + 𝛽l
I5𝑃𝐶lY

\/

l}\

+ 𝜀Y 

where 𝑖	 indicate individuals and k	 indexes principal components ( ) of the genetic data. We 

used a PGS standardized to have mean 0 and standard deviation 1 based on the GWAS meta- 

analysis results excluding the STR (details on how we constructed the PGS are available in 

Section 7 of the SI).  The coefficients 𝛾%5 estimate whether there is an interaction between the 

PGS and an individual’s birth cohort.   

 

Supplementary Table 38 reports the estimated coefficient from these regressions. The results 

indicate a U-shaped trend in AFB and a linear decline in NEB, but do not provide any clear 

evidence of interaction effects between the PGS’s and birth cohort. The only interaction 

coefficient that is significantly different from zero is the interaction between the PGS for 

NEB in the most recent birth cohort (those born 1954-1958). This analysis is a first 

descriptive attempt to examine GxE effects with birth cohorts. However, the PGSs are 

weighted by association coefficients of a GWAS where each cohort consists of individuals 

born in different years. Moreover, individual cohorts controlled for linear, quadratic and 

cubic trends in fertility behavior in their analysis. It would be informative to extend these 

analyses to more recent cohorts and contexts and refine the approach.  

10.2 Educational attainment 

We tested the interaction effects between educational level and the PGS of AFB and NEB in 

three different samples (LifeLines, STR and HRS). To ensure out of sample prediction, the 

PGS excluded each respective sample as required.  

For each cohort, we estimated the following regressionsd:  

𝐴𝐹𝐵Y = 𝛽/ + 𝛽\𝑃𝐺𝑆wxyY + 𝛽%𝑆𝑒𝑥Y + 𝛽�𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛Y + 𝛽�𝑃𝐺𝑆wxyY×𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛Y + 𝛽l
I5𝑃𝐶lY

\/

l}\

+ 𝜀Y 

𝑁𝐸𝐵Y = 𝛽/ + 𝛽\𝑃𝐺𝑆#�yY + 𝛽%𝑆𝑒𝑥Y + 𝛽�𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛Y + 𝛽�𝑃𝐺𝑆#�yY×𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛Y + 𝛽l
I5𝑃𝐶lY

\/

l}\

+ 𝜀Y 

                                                
d For HRS, we estimated only a PGS for NEB, since AFB is not collected in that data. 
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Where educationi is measured as years of education. Supplementary Table 39 reports the 

estimated coefficient from these regressions. The results indicate that years of education are 

positively associated with AFB in both LifeLines and STR, and negatively associated with 

NEB in the HRS. With the exception of NEB in the HRS, we found no evidence of GxE 

effects with education. We can therefore conclude that it appears that education does not 

appear to moderate the effect of the PGS for AFB and NEB. 

 

 11. ROBUSTNESS CHECKS 

To estimate the robustness of our results for AFB, we conducted two additional analyses. 

First, we estimated how the coefficients change if we control for Educational Attainment 

(EA). Using data from deCODE, we ran an additional association analysis using the 10 loci 

that were genome-wide significant in the meta-analysis (p-value<5x10-08). The analysis has 

been restricted to individuals born between 1910 and 1975, who also had data available on 

completed education. The total sample size is 42,187 (17,996 males and 24,191 females). The 

analysis is adjusted for sex, year of birth (linear, squared and cubic), interaction between sex 

and year of birth and the first 10 PCAs. Education is measured by years of education, ranging 

between 10 and 20 years. Supplementary Table 40 reports the association results before and 

after adjusting for educational attainment. Our analysis shows that the effect sizes shrink after 

including educational attainment as a covariate, with an average reduction of around 15%. 

We also estimated the effect of a polygenic risk score of AFB calculated from meta-analysis 

data excluding the deCODE cohort. The polygenic score remains highly significant. The 

effect of 1SD of the AFB score decreases from 0.19 years (69 days) without controlling for 

education to 0.16 years (59 days) when we control for years of education. To summarize, this 

analysis shows that the coefficients are robust to the inclusion of educational attainment in 

the model. 

 

Second, we estimated how the coefficients change after controlling for Education Attainment 

(EA) and Age at First Sex using the UKBiobank (N=50,954). We ran two association 

models: the first follows the GWAS analysis plan with no additional covariates and the 

second added years of education and age at first sexual intercourse as covariates. The results 

are presented in Supplementary Table 41 and Supplementary Figure 37. Our analysis shows 
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that the effect sizes of our top hits are highly concordant (R2=0.94). The inclusion of EA and 

AFS as covariates weakens the effect sizes on average by 40% and increases the p-value of 

the estimated coefficients. However, both EA and AFS have a significant genetic basis and 

are highly genetically correlated with AFB. Therefore, possible genetic pleiotropy may affect 

the results and capture a considerable proportion of the genetic effect. Nevertheless, 7 SNPs 

out of 10 tested, have a p-value<0.05 in the model that controls for EA and AFS. Overall, we 

interpret this additional analysis as a robustness test that confirm that the top hits from our 

meta-analysis are robust to the inclusion of the confounding factors of EA and AFS 

12. POSITIVE SELECTION 

We performed a Haploplotter analysis219 to examine if lead SNPs and/or functional variants 

identified using RegulomeDB show evidence of positive selection. Three variants showed 

standardized integrated haplotype scores <-2 or >2, indicating that these variants represent 

the top 5% of signals in the population. These SNPs are: 1) rs7628058 on chromosome 3 for 

AFB, an eQTLs for RBM6 in monocytes; 2) rs2247510 on chromosome 3 for AFB, an eQTL 

for RBM6 and HYAL3 in monocytes and binding site for a range of transcription factors; 3) 

rs2415984, the lead SNP in the chromosome 14 locus for NEB. Results are presented in 

Supplementary Table 42. 
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MSD Sharp & Dohme and Pfizer to the University of Muenster. Blood collection in the 

Dortmund Health Study was done through funds from the Institute of Epidemiology and 

Social Medicine University of Muenster. Genotyping for the Human Omni Chip was 

supported by the German Ministry of Education and Research (BMBF, grant no. 01ER0816). 

Researchers interested in using DHS data are required to sign and follow the terms of a 

Cooperation Agreement that includes a number of clauses designed to ensure protection of 
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privacy and compliance with relevant laws. For further information, contact Klaus Berger 

(bergerk@uni-muenster.de). 

 

Finnish Twin Cohort 

Phenotype data collection and genotyping in the twin cohort have been supported by  the 

Wellcome Trust Sanger Institute, ENGAGE – European Network for Genetic and Genomic 

Epidemiology, FP7-HEALTH-F4-2007, grant agreement number 201413, Academy of 

Finland (grants 265240, 263278  to JKaprio),  and Global Research Awards for Nicotine 

Dependence (GRAND)  to JK. 

 

FINRISK 

This study was supported by the Academy of Finland Center of Excellence in Complex 

Disease Genetics (grant numbers 213506, 129680), the Academy of Finland (grant numbers 

139635, 129494, 136895, 263836 and 141054), the Sigrid Juselius Foundation , the Paulo 

foundation, the Finnish Medical Foundationand ENGAGE – European Network for Genetic 

and Genomic Epidemiology, FP7-HEALTH-F4-2007, grant agreement number 201413 and  

The Finnish Foundation for Cardiovascular Research. 

 

Generation R 

The Generation R Study is conducted by the Erasmus Medical Center in close collaboration 

with the School of Law and Faculty of Social Sciences of the Erasmus University Rotterdam, 

the Municipal Health Service Rotterdam area, Rotterdam, the Rotterdam Homecare 

Foundation, Rotterdam and the Stichting Trombosedienst & Artsenlaboratorium Rijnmond 

(STAR-MDC), Rotterdam. We gratefully acknowledge the contribution of children and 

parents, general practitioners, hospitals, midwives and pharmacies in Rotterdam. The study 

protocol was approved by the Medical Ethical Committee of the Erasmus Medical Centre, 

Rotterdam. Written informed consent was obtained from all participants. The general design 

of Generation R Study is made possible by financial support from the Erasmus Medical 

Center, Rotterdam, the Erasmus University Rotterdam, the Netherlands Organization for 

Health Research and Development (ZonMw), the Netherlands Organisation for Scientific 

Research (NWO), the Ministry of Health, Welfare and Sport and the Ministry of Youth and 

Families.  Vincent W. Jaddoe received an additional grant from the Netherlands Organization 
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for Health Research and Development (VIDI 016.136.361) and a European Research Council 

Consolidator Grant (ERC-2014-CoG-648916). The generation and management of GWAS 

genotype data for the Generation R Study were done at the Genetic Laboratory of the 

Department of Internal Medicine, Erasmus MC, the Netherlands. We would like to thank 

Karol Estrada, Dr. Tobias A. Knoch, Anis Abuseiris, Luc V. de Zeeuw, and Rob de Graaf, 

for their help in creating GRIMP, BigGRID, MediGRID, and Services@MediGRID/D-Grid, 

(funded by the German Bundesministerium fuer Forschung und Technology; grants 01 AK 

803 A-H, 01 IG 07015 G) for access to their grid computing resources. We thank Mila 

Jhamai, Manoushka Ganesh, Pascal Arp, Marijn Verkerk, Lizbeth Herrera and Marjolein 

Peters for his help in creating, managing and QC of the GWAS database. Also, we thank 

Karol Estrada for their support in creation and analysis of imputed data. J.F.F. has received 

funding from the European Union's Horizon 2020 research and innovation programme under 

grant agreement No 633595 (DynaHEALTH). 

 

GENOA  

GENOA (Genetic Epidemiology Network of Arteriopathy): Support for GENOA was 

provided by the National Heart, Lung and Blood Institute (HL119443, HL118305, 

HL054464, HL054457, HL054481, HL071917 and HL87660) of the National Institutes of 

Health. Genotyping was performed at the Mayo Clinic (Stephen T. Turner, MD, Mariza de 

Andrade PhD, Julie Cunningham, PhD). We thank Eric Boerwinkle, PhD and Megan L. 

Grove from the Human Genetics Center and Institute of Molecular Medicine and Division of 

Epidemiology, University of Texas Health Science Center, Houston, Texas, USA for their 

help with genotyping. We would also like to thank the families that participated in the 

GENOA study. Data Access: GENOA (Genetic Epidemiology Network of Arteriopathy): In 

accordance with the informed consents of the GENOA study, we provide individual-level 

genotype and phenotype data to GENOA investigators and collaborators. To collaborate with 

GENOA investigators, please contact Sharon L.R. Kardia (skardia@umich.edu). We fully 

welcome collaboration with researchers that would like to include the GENOA sample in 

their analyses. We can allow transfer of individual-level data with an appropriate Data 

Transfer Agreement.   

 

GOYA  
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The Danish National Research Foundation established the Danish Epidemiology Science 

Centre, which initiated and created the Danish National Birth Cohort. The cohort is a result of 

a major grant from this Foundation. Additional support for the Danish National Birth Cohort 

was obtained from the Pharmacy Foundation, the Egmont Foundation, the March of Dimes 

Birth Defects Foundation, and the Augustinus Foundation. Genotyping for the GOYA Study 

within the Danish National Birth Cohort was funded by the Wellcome Trust (Grant ref: 

084762MA). 

 

HBCS 

We thank all study participants as well as everybody involved in the Helsinki Birth Cohort 

Study. Helsinki Birth Cohort Study has been supported by grants from the Academy of 

Finland, the Finnish Diabetes Research Society, Folkhälsan Research Foundation, Novo 

Nordisk Foundation, Finska Läkaresällskapet, Signe and Ane Gyllenberg 

Foundation,University of Helsinki, Ministry of Education, Ahokas Foundation, Emil 

Aaltonen Foundation. 

 

Health 2000 

The Health 2000 Study was mainly funded from the budget of the National Institute for 

Health and Welfare (THL). Additional funding was received from the Finnish Centre for 

Pensions, the Social Insurance Institution of Finland, the Local Government Pensions 

Institution, the National Research and Development Centre for Welfare and Health, the 

Finnish Dental Association, the Finnish Dental Society, Statistics Finland, the Finnish 

Institute for Occupational Health, The Finnish Work Environment Fund, the UKK Institute 

for Health Promotion Research and the Occupational Safety and Health Fund of the State 

Sector. The data used for this study can be made available on request to the Health 2000/2011 

scientific committee according to the ethical and research guidelines 

(www.terveys2011.info/aineisto) as well as Finnish legislation.  

 

Health ABC 

The Health ABC Study was supported by NIA contracts N01AG62101, N01AG62103, and 

N01AG62106 and, in part, by the NIA Intramural Research Program. The genome-wide 

association study was funded by NIA grant 1R01AG032098-01A1 to Wake Forest University 
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Health Sciences and genotyping services were provided by the Center for Inherited Disease 

Research (CIDR). CIDR is fully funded through a federal contract from the National 

Institutes of Health to The Johns Hopkins University, contract number 

HHSN268200782096C. This study utilized the high-performance computational capabilities 

of the Biowulf Linux cluster at the National Institutes of Health, Bethesda, Md. 

(http://biowulf.nih.gov). 

 

HRS 

HRS (Health and Retirement Study): HRS is supported by the National Institute on Aging 

(NIA U01AG009740).  The genotyping was funded separately by the National Institute on 

Aging (RC2 AG036495, RC4 AG039029).  Our genotyping was conducted by the NIH 

Center for Inherited Disease Research (CIDR) at Johns Hopkins University.  Genotyping 

quality control and final preparation of the data were performed by the Genetics Coordinating 

Center at the University of Washington. Data Access: 

HRS (Health and Retirement Study): Genotype data can be accessed via the database of 

Genotypes and Phenotypes (dbGaP, http://www.ncbi.nlm.nih.gov/gap, accession number 

phs000428.v1.p1). Researchers who wish to link genetic data with other HRS measures that 

are not in dbGaP, such as fertility data, must apply for access from HRS.  See the HRS 

website (http://hrsonline.isr.umich.edu/gwas) for details. 

HTO 

We thank all the families who contributed to this study.  Phenotyping and genotyping of the 

HTO cohort was funded by the Wellcome Trust, the UK Medical Research Council and the 

British Heart Foundation.  Data are available upon request from the Principal Investigator, 

Bernard Keavney (bernard.keavney@manchester.ac.uk). 
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We thank Martina La Bianca and Angela D’Eustacchio for technical support. We are very 

grateful to the municipal administrators for their collaboration on the project and for logistic 

support. We would like to thank all participants to this study.  
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We thank all the participants to the project, the San Raffaele Hospital MDs who contributed 

to clinical data collection,  prof. Clara Camaschella  who coordinated  the data collection, 

Corrado Masciullo and Massimiliano Cocca for the  database informatics. 

The research was supported by funds from Compagnia di San Paolo, Torino, Italy; 

Fondazione Cariplo, Italy; Telethon Italy; Ministry of Health, Ricerca Finalizzata 2008 and 

2011-2012 and Public Health Genomics Project 2010. 

 

KORA F3 

The KORA study was initiated and financed by the Helmholtz Zentrum München – German 

Research Center for Environmental Health, which is funded by the German Federal Ministry 

of Education and Research (BMBF) and by the State of Bavaria. Furthermore, KORA 

research was supported within the Munich Center of Health Sciences (MC-Health), Ludwig-

Maximilians-Universität, as part of LMUinnovativ. 

The funders had no role in study design, data collection and analysis, decision to publish, or 

preparation of the manuscript. We thank all the study participants, all members of staff of the 

Institute of Epidemiology II and the field staff in Augsburg who planned and conducted the 

study. 

 

LBC1921 and LBC1936 

We thank the cohort participants and team members who contributed to these studies. 

Phenotype collection in the Lothian Birth Cohort 1921 was supported by the UK’s 

Biotechnology and Biological Sciences Research Council (BBSRC), The Royal Society, and 

The Chief Scientist Office of the Scottish Government. Phenotype collection in the Lothian 

Birth Cohort 1936 was supported by Age UK (The Disconnected Mind project).  Genotyping 

of the cohorts was funded by the BBSRC. The work was undertaken by The University of 

Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology, part of the cross 

council Lifelong Health and Wellbeing Initiative (MR/K026992/1). Funding from the 

BBSRC and Medical Research Council (MRC) is gratefully acknowledged. 

 

LIFELINES 

Lifelines is a multi-disciplinary prospective population-based cohort study examining in a 

unique three-generation design the health and health-related behaviors of 167,729 persons 
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living in the North of The Netherlands. It employs a broad range of investigative procedures 

in assessing the biomedical, socio-demographic, behavioral, physical and psychological 

factors which contribute to the health and disease of the general population, with a special 

focus on multi-morbidity and complex genetics.220,221 

The Lifelines Cohort Study, and generation and management of GWAS genotype data for the 

Lifelines Cohort Study is supported by the Netherlands Organization of Scientific Research 

NWO (grant 175.010.2007.006), the Ministry of Economic Affairs, the Ministry of 

Education, Culture and Science, the Ministry for Health, Welfare and Sports, the Northern 

Netherlands Collaboration of Provinces (SNN),  the Province of Groningen, University 

Medical Center Groningen, the University of Groningen, Dutch Kidney Foundation and 

Dutch Diabetes Research Foundation. The authors wish to acknowledge the services of the 

Lifelines Cohort Study, the contributing research centers delivering data to Lifelines, and all 

the study participant. Data availability: Lifelines is a facility that is open for all researchers. 

Information on application and data access procedure is summarized on www.lifelines.net. 

 

Longevity 

National Institutes of Health (AG028872, CA164468 and DA033788  to A.B., AG042188 to 

G.A., AG021654-01 and AG-18728-02A1 to N.B.) and the Glenn Center for the Biology of 

Human Aging. 

 

MCTFR 

MCTFR acknowledges support by the National Institutes of Health under award numbers 

R37DA005147, R01AA009367, R01AA011886, R01DA013240, and R01MH066140.  

 

MESA 

MESA and the MESA SHARe project are conducted and supported by the National Heart, 

Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for 

MESA is provided by contracts HHSN268201500003I, N01-HC-95159, N01-HC-95160, 

N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-95165, N01-

HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-001079, UL1-TR-

000040, and DK063491. Funding for SHARe genotyping was provided by NHLBI Contract 

N02-HL-64278.  Genotyping was performed at Affymetrix  (Santa Clara, California, USA) 
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and the Broad Institute of Harvard and MIT (Boston, Massachusetts, USA) using the 

Affymetrix Genome-Wide Human SNP Array 6.0. 

  

MoBa 

MoBa (The Norwegian Mother and Child Cohort Study of NIPH) – the genotyping and 

analyses were supported by the grants from: Jane and Dan Olsson Foundations (Gothenburg, 

Sweden), Swedish Medical Research Council (2015-02559), Norwegian Research 

Council/FUGE (grant no. 151918/S10; FRI-MEDBIO 249779) and Swedish Medical Society 

(SLS 2008-21198), Swedish government grants to researchers in the public health service 

(ALFGBG-507701).  

The Norwegian Mother and Child Cohort Study is supported by the Norwegian Ministry of 

Health and Care Services and the Ministry of Education and Research, NIH/NIEHS (contract 

no N01-ES-75558), NIH/NINDS (grant no.1 UO1 NS 047537-01 and grant no.2 UO1 NS 

047537-06A1). We are grateful to all the participating families in Norway who take part in 

this on-going cohort study. 

 

MrOS Sweden 

MrOS Sweden was funded by the Swedish Research Council, the Swedish Foundation for 

Strategic Research, the ALF/LUA research grant in Gothenburg, the Lundberg Foundation, 

the Torsten and Ragnar Söderberg's Foundation and the Novo Nordisk Foundation. 

 

NEO 

The authors of the NEO study thank all individuals who participated in the Netherlands 

Epidemiology in Obesity study, all participating general practitioners for inviting eligible 

participants and all research nurses for collection of the data. We thank the NEO study group, 

Pat van Beelen, Petra Noordijk and Ingeborg de Jonge for the coordination, lab and data 

management of the NEO study. The genotyping in the NEO study was supported by the 

Centre National de Génotypage (Paris, France), headed by Jean-Francois Deleuze. The NEO 

study is supported by the participating Departments, the Division and the Board of Directors 

of the Leiden University Medical Center, and by the Leiden University, Research Profile 

Area Vascular and Regenerative Medicine. Dennis Mook-Kanamori is supported by Dutch 

Science Organization (ZonMW-VENI Grant 916.14.023).  
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NESDA 

The infrastructure for the NESDA study is funded through the Geestkracht programme of the 

Dutch Scientific Organization (ZON-MW, grant number 10-000-1002) and matching funds 

from participating universities and mental health care organizations. Genotyping in NESDA 

was funded by the Genetic Association Information Network (GAIN) of the Foundation for 

the US National Institutes of Health. Statistical analyses were carried out on the Genetic 

Cluster Computer (http://www.geneticcluster.org), which is financially supported by the 

Netherlands Scientific Organization (NWO 480-05-003) along with a supplement from the 

Dutch Brain Foundation. 

Data availability 

Data are available upon request from the NESDA data management bureau. 

 

Nurses’ Health Study (NHS) and Health Professionals Follow-up Study (HPFS) 

Supported by grants UM1 CA186107, UM1 CA167552, DK091718, HL071981, HL073168, 

CA87969, CA49449, CA055075, HL34594, HL088521, U01HG004399, DK080140, 

5P30DK46200, U54CA155626, DK58845, U01HG004728-02, EY015473, DK70756 and 

DK46200 from the National Institutes of Health, with additional support for genotyping from 

Merck Research Laboratories, North Wales, PA.  

 

NTR (Netherlands Twin Register) 

Netherland Twin Register: Funding was obtained from the Netherlands Organization for 

Scientific Research (NWO) and The Netherlands Organisation for Health Research and 

Development (ZonMW) grants 904-61-090, 985-10-002, 904-61-193,480-04-004, 400-05-

717, Addiction-31160008, Middelgroot-911-09-032, Spinozapremie 56-464-14192, 

Biobanking and Biomolecular Resources Research Infrastructure (BBMRI –NL, 

184.021.007). VU Institute for Health and Care Research (EMGO+ ); the European 

Community's Seventh Framework Program (FP7/2007-2013), ENGAGE (HEALTH-F4-

2007-201413); the European Research Council (ERC Advanced, 230374, ERC Starting grant 

284167), Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06),  the 

Avera Institute, Sioux Falls, South Dakota (USA) and the National Institutes of Health (NIH, 

R01D0042157-01A, MH081802;  R01 DK092127-04, Grand Opportunity grants 1RC2 
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MH089951). Part of the genotyping and analyses were funded by the Genetic Association 

Information Network (GAIN) of the Foundation for the National Institutes of Health. 

Computing was supported by BiG Grid, the Dutch e-Science Grid, which is financially 

supported by NWO. 
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Nurses' Health Study and Health Professionals Follow-up Study 

We need to acknowledge support of the following grants from the National Institutes of 

Health: UM1 CA186107; R01 CA49449; UM1 CA167552; Nurses' Health Study and Health 

Professionals Follow-up Study 

 

OGP Ogliastra Genetic Park 

 

Funding: Grant from the Italian Ministry of Education, University and Research (MIUR) n°: 

5571/DSPAR/2002 

 

ORCADES 

The Orkney Complex Disease Study (ORCADES) was supported by the Chief Scientist 

Office of the Scottish Government, the Royal Society, the MRC Human Genetics Unit, 

Arthritis Research UK and the European Union framework program 6 EUROSPAN project 

(contract no. LSHG-CT-2006-018947). DNA extractions were performed at the Wellcome 

Trust Clinical Research Facility in Edinburgh. We would like to acknowledge the invaluable 

contributions of Lorraine Anderson and the research nurses in Orkney, the administrative 

team in Edinburgh and the people of Orkney. Details regarding data access are available at 

the ORCADES website (http://www.orcades.ed.ac.uk/orcades/orcades2.html). 

 

QIMR  

Funding was provided by the Australian National Health and Medical Research Council 

(241944, 339462, 389927, 389875, 389891, 389892, 389938, 442915, 442981, 496739, 

552485, 552498), the Australian Research Council (A7960034, A79906588, A79801419, 

DP0770096, DP0212016, DP0343921), the FP-5 GenomEUtwin Project (QLG2-CT-2002-

01254), and the U.S. National Institutes of Health (NIH grants AA07535, AA10248, 

AA13320, AA13321, AA13326, AA14041, DA12854, MH66206). A portion of the 

genotyping on which the QIMR study was based (Illumina 370K scans) was carried out at the 

Center for Inherited Disease Research, Baltimore (CIDR), through an access award to the 

authors’ late colleague Dr. Richard Todd (Psychiatry, Washington University School of 

Medicine, St Louis). Imputation was carried out on the Genetic Cluster Computer, which is 

financially supported by the Netherlands Scientific Organization (NWO 480-05-003). 
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S.E.M., is supported by the Australian Research Council (ARC) Fellowship Scheme. The 

funders had no role in study design, data collection and analysis, decision to publish, or 

preparation of the manuscript. Researchers interested in using QIMR data can contact Nick 

Martin (Nick.Martin@qimrberghofer.edu.au). 

 

Rotterdam Study 

The generation and management of GWAS genotype data for the Rotterdam Study is 

supported by the Netherlands Organisation of Scientific Research NWO Investments (nr. 

175.010.2005.011, 911-03-012). This study is funded by the Research Institute for Diseases 

in the Elderly (014-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/Netherlands 

Organisation for Scientific Research (NWO) project nr. 050-060-810. We thank Pascal Arp, 

Mila Jhamai, Marijn Verkerk, Lizbeth Herrera and Marjolein Peters for their help in creating 

the GWAS database, and Karol Estrada and Maksim V. Struchalin for their support in 

creation and analysis of imputed data. The Rotterdam Study is funded by Erasmus Medical 

Center and Erasmus University, Rotterdam, Netherlands Organization for the Health 

Research and Development (ZonMw), the Research Institute for Diseases in the Elderly 

(RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and 

Sports, the European Commission (DG XII), and the Municipality of Rotterdam. The authors 

are grateful to the study participants, the staff from the Rotterdam Study and the participating 

general practitioners and pharmacists. Some of the statistical analyses were carried out on the 

Genetic Cluster Computer (http://www.geneticcluster.org) which is financially supported by 

the Netherlands Scientific Organization (NWO 480-05-003 PI: Posthuma) along with a 

supplement from the Dutch Brain Foundation and the VU University Amsterdam. Cornelius 

A. Rietveld gratefully acknowledges funding from the Netherlands Organization for 

Scientific Research (NWO Veni grant 016.165.004). Researchers who wish to use data of the 

Rotterdam Study must obtain approval from the Rotterdam Study Management Team. They 

are advised to contact the PI of the Rotterdam Study, Dr Albert Hofman 

(a.hofman@erasmusmc.nl). 

 

Kaiser Permanente Research Program on Genes, Environment, and Health (RPGEH) 

Data used in this study were provided by the Kaiser Permanente Research Program on Genes, 

Environment, and Health (RPGEH): Genetic Epidemiology Research on Adult Health and 



 

76 

 

Aging (GERA), funded by the National Institutes of Health [RC2 AG036607 (Schaefer and 

Risch)], the Robert Wood Johnson Foundation, the Wayne and Gladys Valley Foundation, 

The Ellison Medical Foundation, and the Kaiser Permanente Community Benefits Program. 

Access to RPGEH data used in this study may be obtained by application via the RPGEH 

Research portal: https://rpgehportal.kaiser.org. A subset of the GERA cohort consented for 

public use can be found at NIH/dbGaP: phs000674.v1.p1  

 

SardiNIA 

The SardiNIA (ProgeNIA) team was supported by Contract NO1-AG-1-2109 from the NIA, 

and in part by the Intramural Research Program of the National Institute on Aging (NIA), 

National Institutes of Health (NIH). The authors are grateful to all of the volunteers who 

participated in this study, Monsignore Piseddu, Bishop of Ogliastra, the mayors and citizens 

of the Sardinian towns (Lanusei, Ilbono, Arzana, and Elini), the head of the Public Health 

Unit ASL4 for their volunteerism and cooperation, and team of physicians, nurses, biologists 

and the recruitment personnel. 

 

SHIP 

SHIP is part of the Community Medicine Research net of the University of Greifswald, 

Germany, which is funded by the Federal Ministry of Education and Research (grants no. 

01ZZ9603, 01ZZ0103, and 01ZZ0403), the Ministry of Cultural Affairs as well as the Social 

Ministry of the Federal State of Mecklenburg-West Pomerania, and the network ‘Greifswald 

Approach to Individualized Medicine (GANI_MED)’ funded by the Federal Ministry of 

Education and Research (grant 03IS2061A). Genome-wide data have been supported by the 

Federal Ministry of Education and Research (grant no. 03ZIK012) and a joint grant from 

Siemens Healthcare, Erlangen, Germany and the Federal State of Mecklenburg- West 

Pomerania. The University of Greifswald is a member of the Caché Campus program of the 

InterSystems GmbH. External data access: Researchers may apply for access on the SHIP 

data by filling in a data application and sending it to the SHIP steering committee. The data 

application form can be accessed online at https://fvcm.med.uni-greifswald.de/ 
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This project was supported by grants from the Collaborative Research Center funded by the 

German Research Foundation (CRC 1052; C01, B01, B03, SPP 1629 TO 718/2), from the 

German Diabetes Association, from the DHFD (Diabetes Hilfs- und Forschungsfonds 

Deutschland) and from Boehringer Ingelheim Foundation . We thank all those who 

participated in the study. Sincere thanks are given to Knut Krohn (Microarray Core Facility 

of the Interdisciplinary Centre for Clinical Research, University of Leipzig) for the 

genotyping support. Inga Prokopenko and Vasiliki Lagou were partial funded through the 

European Community's Seventh Framework Programme (FP7/2007-2013), ENGAGE 

project, grant agreement HEALTH-F4-2007-201413. 

 

THISEAS 

THISEAS (The Hellenic study of Interactions between SNPs & Eating in Atherosclerosis 

Susceptibility) - Recruitment for THISEAS was partially funded by a research grant (PENED 

2003) from the Greek General Secretary of Research and Technology; we thank all the 

dieticians and clinicians for their contribution to the project. The genotyping was funded by 

the Wellcome Trust. We like to thank the members of the WTSI GenotypingFacility in 

particular Sarah Edkins and Cordelia Langford. Researchers interested in using the THISEAS 

data must obtain approval from the THISEAS study group. Researchers using the data are 

required to follow the terms of a research agreement between them and the THISEAS 

investigators. Note that individual level data cannot be released to external investigators, only 

summary GWAS results. For further information contact George Dedoussis 

(dedousi@hua.gr) 

 

TwinGene (STR) 

STR (Swedish Twin Registry) – The Jan Wallander and Tom Hedelius Foundation (P2012-

0002:1), the Ragnar Söderberg Foundation (E9/11), The Swedish Research Council (421-

2013-1061), the Ministry for Higher Education, The Swedish Research Council (M-2205-

1112), GenomEUtwin (EU/QLRT-2001-01254; QLG2-CT-2002-01254), NIH DK U01-

066134, The Swedish Foundation for Strategic Research (SSF). Researchers interested in 

using STR data must obtain approval from the Swedish Ethical Review Board and from the 

Steering Committee of the Swedish Twin Registry. Rietveld gratefully acknowledges funding 
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from the Netherlands Organization for Scientific Research (NWO Veni grant 016.165.004). 

Researchers using the data are required to follow the terms of an Assistance Agreement 

containing a number of clauses designed to ensure protection of privacy and compliance with 

relevant laws. For Further information, contact Patrik Magnusson (Patrik.magnusson@ki.se). 

 

TwinsUK 

The study was funded by the Wellcome Trust; European Community’s Seventh Framework 

Programme (FP7/2007-2013). The study also receives support from the National Institute for 

Health Research (NIHR)- funded BioResource, Clinical Research Facility and Biomedical 

Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with 

King's College London. SNP Genotyping was performed by The Wellcome Trust Sanger 

Institute and National Eye Institute via NIH/CIDR. 

Statistical analyses were carried out on the Genetic Cluster Computer 

(http://www.geneticcluster.org), which is financially supported by the Netherlands Scientific 

Organization (NWO 480-05-003) along with a supplement from the Dutch Brain Foundation. 

Data availability: Data are available upon request from the TwinsUK data management 

bureau. 

 

UKBiobank  

This research has been conducted using the UK Biobank Resource 

 

WGHS 

The WGHS is supported by HL043851, HL080467 and CA047988 from the National 

Institutes of Health, with collaborative scientific support and funding for genotyping 

provided by Amgen.  

 

WHICAP 

WHICAP is supported by a grant (R01AG0372) from the National Institute on Aging of the 

National Institutes of Health. 
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WHITEHALL 

The Whitehall II study has been supported by grants from the Medical Research Council 

(K013351); British Heart Foundation; Health and Safety Executive; Department of Health; 

National Heart Lung and Blood Institute (NHLBI: HL36310) and National Institute on Aging 

(AG13196), US, NIH; Agency for Health Care Policy Research (HS06516); and the John D 

and Catherine T MacArthur Foundation Research Networks on Successful Midlife 

Development and Socio-economic Status and Health. MeKu is partially supported by the 

Economic and Social Research Council International Centre for Life Course Studies in 

Society and Health (RES-596-28-0001). MK is partially supported by the Medical Research 

Council and the Economic and Social Research Council. 

 

YFS 

The Young Finns Study has been financially supported by the Academy of Finland: grants 

286284 (T.L.), 134309 (Eye), 126925, 121584, 124282, 129378 (Salve), 117787 (Gendi), and 

41071 (Skidi); the Social Insurance Institution of Finland; Kuopio, Tampere and Turku 

University Hospital Medical Funds (grant X51001 for T.L.); Juho Vainio Foundation; Paavo 

Nurmi Foundation; Finnish Foundation of Cardiovascular Research (T.L.); Finnish Cultural 
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